【源码是什么工作轻松】【jalor5源码】【jquery 延迟对象源码】nginx epoll 源码

时间:2024-11-23 06:56:36 分类:源码级保护方法 来源:Google面试考源码吗

1.深入理解Linux的源码epoll机制
2.nginx源码分析--master和worker进程模型
3.Nginx面试常问题&工作原理揭秘!
4.Nginx源码分析 - 主流程篇 - 多进程的源码惊群和进程负载均衡处理
5.Nginx源码分析 - Event事件篇 - Epoll事件模块
6.Nginx源码分析 - Event事件篇 - Nginx的Event事件模块概览

nginx epoll 源码

深入理解Linux的epoll机制

       在Linux系统之中有一个核心武器:epoll池,在高并发的源码,高吞吐的源码IO系统中常常见到epoll的身影。

IO多路复用

       在Go里最核心的源码是Goroutine,也就是源码源码是什么工作轻松所谓的协程,协程最妙的源码一个实现就是异步的代码长的跟同步代码一样。比如在Go中,源码网络IO的源码read,write看似都是源码同步代码,其实底下都是源码异步调用,一般流程是源码:

write(/*IO参数*/)请求入队等待完成后台loop程序发送网络请求唤醒业务方

       Go配合协程在网络IO上实现了异步流程的同步代码化。核心就是源码用epoll池来管理网络fd。

       实现形式上,源码后台的源码程序只需要1个就可以负责管理多个fd句柄,负责应对所有的业务方的IO请求。这种一对多的IO模式我们就叫做IO多路复用。

       多路是指?多个业务方(句柄)并发下来的IO。

       复用是指?复用这一个后台处理程序。

       站在IO系统设计人员的角度,业务方咱们没办法提要求,因为业务是上帝,只有你服从的份,他们要创建多个fd,那么你就需要负责这些fd的处理,并且最好还要并发起来。

       业务方没法提要求,那么只能要求后台loop程序了!

       要求什么呢?快!快!快!这就是最核心的要求,处理一定要快,要给每一个fd通道最快的感受,要让每一个fd觉得,你只在给他一个人跑腿。

       那有人又问了,那我一个IO请求(比如write)对应一个线程来处理,这样所有的IO不都并发了吗?是可以,但是有瓶颈,线程数一旦多了,性能是反倒会差的。

       这里不再对比多线程和IO多路复用实现高并发之间的区别,详细的可以去了解下nginx和redis高并发的秘密。

最朴实的实现方式?

       我不用任何其他系统调用,能否实现IO多路复用?

       可以的。那么写个for循环,每次都尝试IO一下,读/写到了就处理,读/写不到就sleep下。这样我们不就实现了1对多的IO多路复用嘛。

whileTrue:foreach句柄数组{ read/write(fd,/*参数*/)}sleep(1s)

       慢着,有个问题,上面的程序可能会被卡死在第三行,使得整个系统不得运行,为什么?

       默认情况下,我们没有加任何参数create出的句柄是阻塞类型的。我们读数据的时候,如果数据还没准备好,jalor5源码是会需要等待的,当我们写数据的时候,如果还没准备好,默认也会卡住等待。所以,在上面伪代码第三行是可能被直接卡死,而导致整个线程都得到不到运行。

       举个例子,现在有,,这3个句柄,现在读写都没有准备好,只要read/write(,/*参数*/)就会被卡住,但,这两个句柄都准备好了,那遍历句柄数组,,的时候就会卡死在前面,后面,则得不到运行。这不符合我们的预期,因为我们IO多路复用的loop线程是公共服务,不能因为一个fd就直接瘫痪。

       那这个问题怎么解决?

       只需要把fd都设置成非阻塞模式。这样read/write的时候,如果数据没准备好,返回EAGIN的错误即可,不会卡住线程,从而整个系统就运转起来了。比如上面句柄还未就绪,那么read/write(,/*参数*/)不会阻塞,只会报个EAGIN的错误,这种错误需要特殊处理,然后loop线程可以继续执行,的读写。

       以上就是最朴实的IO多路复用的实现了。但是好像在生产环境没见过这种IO多路复用的实现?为什么?

       因为还不够高级。for循环每次要定期sleep1s,这个会导致吞吐能力极差,因为很可能在刚好要sleep的时候,所有的fd都准备好IO数据,而这个时候却要硬生生的等待1s,可想而知。。。

       那有同学又要质疑了,那for循环里面就不sleep嘛,这样不就能及时处理了吗?

       及时是及时了,但是CPU估计要跑飞了。不加sleep,那在没有fd需要处理的时候,估计CPU都要跑到%了。这个也是无法接受的。

       纠结了,那sleep吞吐不行,不sleep浪费cpu,怎么办?

       这种情况用户态很难有所作为,只能求助内核来提供机制协助来。jquery 延迟对象源码因为内核才能及时的管理这些通知和调度。

       我们再梳理下IO多路复用的需求和原理。IO多路复用就是1个线程处理多个fd的模式。我们的要求是:这个“1”就要尽可能的快,避免一切无效工作,要把所有的时间都用在处理句柄的IO上,不能有任何空转,sleep的时间浪费。

       有没有一种工具,我们把一箩筐的fd放到里面,只要有一个fd能够读写数据,后台loop线程就要立马唤醒,全部马力跑起来。其他时间要把cpu让出去。

       能做到吗?能,这种需求只能内核提供机制满足你。

这事Linux内核必须要给个说法?

       是的,想要不用sleep这种辣眼睛的实现,Linux内核必须出手了,毕竟IO的处理都是内核之中,数据好没好内核最清楚。

       内核一口气提供了3种工具select,poll,epoll。

       为什么有3种?

       历史不断改进,矬->较矬->卧槽、高效的演变而已。

       Linux还有其他方式可以实现IO多路复用吗?

       好像没有了!

       这3种到底是做啥的?

       这3种都能够管理fd的可读可写事件,在所有fd不可读不可写无所事事的时候,可以阻塞线程,切走cpu。fd有情况的时候,都要线程能够要能被唤醒。

       而这三种方式以epoll池的效率最高。为什么效率最高?

       其实很简单,这里不详说,其实无非就是epoll做的无用功最少,select和poll或多或少都要多余的拷贝,盲猜(遍历才知道)fd,所以效率自然就低了。

       举个例子,以select和epoll来对比举例,池子里管理了个句柄,loop线程被唤醒的时候,select都是蒙的,都不知道这个fd里谁IO准备好了。这种情况怎么办?只能遍历这个fd,一个个测试。假如只有一个句柄准备好了,那相当于做了1千多倍的无效功。

       epoll则不同,从epoll_wait醒来的时候就能精确的拿到就绪的fd数组,不需要任何测试,拿到的就是要处理的。

epoll池原理

       下面我们看一下epoll池的使用和原理。

epoll涉及的系统调用

       epoll的使用非常简单,只有下面3个系统调用。miui官网源码

epoll_createepollctlepollwait

       就这?是的,就这么简单。

       epollcreate负责创建一个池子,一个监控和管理句柄fd的池子;

       epollctl负责管理这个池子里的fd增、删、改;

       epollwait就是负责打盹的,让出CPU调度,但是只要有“事”,立马会从这里唤醒;

epoll高效的原理

       Linux下,epoll一直被吹爆,作为高并发IO实现的秘密武器。其中原理其实非常朴实:epoll的实现几乎没有做任何无效功。我们从使用的角度切入来一步步分析下。

       首先,epoll的第一步是创建一个池子。这个使用epoll_create来做:

       原型:

intepoll_create(intsize);

       示例:

epollfd=epoll_create();if(epollfd==-1){ perror("epoll_create");exit(EXIT_FAILURE);}

       这个池子对我们来说是黑盒,这个黑盒是用来装fd的,我们暂不纠结其中细节。我们拿到了一个epollfd,这个epollfd就能唯一代表这个epoll池。

       然后,我们就要往这个epoll池里放fd了,这就要用到epoll_ctl了

       原型:

intepoll_ctl(intepfd,intop,intfd,structepoll_event*event);

       示例:

if(epoll_ctl(epollfd,EPOLL_CTL_ADD,,&ev)==-1){ perror("epoll_ctl:listen_sock");exit(EXIT_FAILURE);}

       上面,我们就把句柄放到这个池子里了,op(EPOLL_CTL_ADD)表明操作是增加、修改、删除,event结构体可以指定监听事件类型,可读、可写。

       第一个跟高效相关的问题来了,添加fd进池子也就算了,如果是修改、删除呢?怎么做到时间快?

       这里就涉及到你怎么管理fd的数据结构了。

       最常见的思路:用list,可以吗?功能上可以,但是性能上拉垮。list的结构来管理元素,时间复杂度都太高O(n),每次要一次次遍历链表才能找到位置。池子越大,性能会越慢。

       那有简单高效的数据结构吗?

       有,红黑树。Linux内核对于epoll池的内部实现就是用红黑树的结构体来管理这些注册进程来的句柄fd。红黑树是一种平衡二叉树,时间复杂度为O(logn),就算这个池子就算不断的增删改,也能保持非常稳定的查找性能。

       现在思考第二个高效的秘密:怎么才能保证数据准备好之后,立马感知呢?

       epoll_ctl这里会涉及到一点。秘密就是:回调的设置。在epoll_ctl的内部实现中,除了把句柄结构用红黑树管理,另一个核心步骤就是设置poll回调。

       思考来了:poll回调是什么?怎么设置?

       先说说file_operations->poll是什么?

       在fd篇说过,Linux设计成一切皆是文件的架构,这个不是nodeclub最新源码说说而已,而是随处可见。实现一个文件系统的时候,就要实现这个文件调用,这个结构体用structfile_operations来表示。这个结构体有非常多的函数,我精简了一些,如下:

structfile_operations{ ssize_t(*read)(structfile*,char__user*,size_t,loff_t*);ssize_t(*write)(structfile*,constchar__user*,size_t,loff_t*);__poll_t(*poll)(structfile*,structpoll_table_struct*);int(*open)(structinode*,structfile*);int(*fsync)(structfile*,loff_t,loff_t,intdatasync);//....};

       你看到了read,write,open,fsync,poll等等,这些都是对文件的定制处理操作,对于文件的操作其实都是在这个框架内实现逻辑而已,比如ext2如果有对read/write做定制化,那么就会是ext2_read,ext2_write,ext4就会是ext4_read,ext4_write。在open具体“文件”的时候会赋值对应文件系统的file_operations给到file结构体。

       那我们很容易知道read是文件系统定制fd读的行为调用,write是文件系统定制fd写的行为调用,file_operations->poll呢?

       这个是定制监听事件的机制实现。通过poll机制让上层能直接告诉底层,我这个fd一旦读写就绪了,请底层硬件(比如网卡)回调的时候自动把这个fd相关的结构体放到指定队列中,并且唤醒操作系统。

       举个例子:网卡收发包其实走的异步流程,操作系统把数据丢到一个指定地点,网卡不断的从这个指定地点掏数据处理。请求响应通过中断回调来处理,中断一般拆分成两部分:硬中断和软中断。poll函数就是把这个软中断回来的路上再加点料,只要读写事件触发的时候,就会立马通知到上层,采用这种事件通知的形式就能把浪费的时间窗就完全消失了。

       划重点:这个poll事件回调机制则是epoll池高效最核心原理。

       划重点:epoll池管理的句柄只能是支持了file_operations->poll的文件fd。换句话说,如果一个“文件”所在的文件系统没有实现poll接口,那么就用不了epoll机制。

       第二个问题:poll怎么设置?

       在epoll_ctl下来的实现中,有一步是调用vfs_poll这个里面就会有个判断,如果fd所在的文件系统的file_operations实现了poll,那么就会直接调用,如果没有,那么就会报告响应的错误码。

staticinline__poll_tvfs_poll(structfile*file,structpoll_table_struct*pt){ if(unlikely(!file->f_op->poll))returnDEFAULT_POLLMASK;returnfile->f_op->poll(file,pt);}

       你肯定好奇poll调用里面究竟是实现了什么?

       总结概括来说:挂了个钩子,设置了唤醒的回调路径。epoll跟底层对接的回调函数是:ep_poll_callback,这个函数其实很简单,做两件事情:

       把事件就绪的fd对应的结构体放到一个特定的队列(就绪队列,readylist);

       唤醒epoll,活来啦!

       当fd满足可读可写的时候就会经过层层回调,最终调用到这个回调函数,把对应fd的结构体放入就绪队列中,从而把epoll从epoll_wait出唤醒。

       这个对应结构体是什么?

       结构体叫做epitem,每个注册到epoll池的fd都会对应一个。

       就绪队列很高级吗?

       就绪队列就简单了,因为没有查找的需求了呀,只要是在就绪队列中的epitem,都是事件就绪的,必须处理的。所以就绪队列就是一个最简单的双指针链表。

       小结下:epoll之所以做到了高效,最关键的两点:

       内部管理fd使用了高效的红黑树结构管理,做到了增删改之后性能的优化和平衡;

       epoll池添加fd的时候,调用file_operations->poll,把这个fd就绪之后的回调路径安排好。通过事件通知的形式,做到最高效的运行;

       epoll池核心的两个数据结构:红黑树和就绪列表。红黑树是为了应对用户的增删改需求,就绪列表是fd事件就绪之后放置的特殊地点,epoll池只需要遍历这个就绪链表,就能给用户返回所有已经就绪的fd数组;

哪些fd可以用epoll来管理?

       再来思考另外一个问题:由于并不是所有的fd对应的文件系统都实现了poll接口,所以自然并不是所有的fd都可以放进epoll池,那么有哪些文件系统的file_operations实现了poll接口?

       首先说,类似ext2,ext4,xfs这种常规的文件系统是没有实现的,换句话说,这些你最常见的、真的是文件的文件系统反倒是用不了epoll机制的。

       那谁支持呢?

       最常见的就是网络套接字:socket。网络也是epoll池最常见的应用地点。Linux下万物皆文件,socket实现了一套socket_file_operations的逻辑(net/socket.c):

staticconststructfile_operationssocket_file_ops={ .read_iter=sock_read_iter,.write_iter=sock_write_iter,.poll=sock_poll,//...};

       我们看到socket实现了poll调用,所以socketfd是天然可以放到epoll池管理的。

       还有吗?

       有的,其实Linux下还有两个很典型的fd,常常也会放到epoll池里。

       eventfd:eventfd实现非常简单,故名思义就是专门用来做事件通知用的。使用系统调用eventfd创建,这种文件fd无法传输数据,只用来传输事件,常常用于生产消费者模式的事件实现;

       timerfd:这是一种定时器fd,使用timerfd_create创建,到时间点触发可读事件;

       小结一下:

       ext2,ext4,xfs等这种真正的文件系统的fd,无法使用epoll管理;

       socketfd,eventfd,timerfd这些实现了poll调用的可以放到epoll池进行管理;

       其实,在Linux的模块划分中,eventfd,timerfd,epoll池都是文件系统的一种模块实现。

思考

       前面我们已经思考了很多知识点,有一些简单有趣的知识点,提示给读者朋友,这里只抛砖引玉。

       问题:单核CPU能实现并行吗?

       不行。

       问题:单线程能实现高并发吗?

       可以。

       问题:那并发和并行的区别是?

       一个看的是时间段内的执行情况,一个看的是时间时刻的执行情况。

       问题:单线程如何做到高并发?

       IO多路复用呗,今天讲的epoll池就是了。

       问题:单线程实现并发的有开源的例子吗?

       redis,nginx都是非常好的学习例子。当然还有我们Golang的runtime实现也尽显高并发的设计思想。

总结

       IO多路复用的原始实现很简单,就是一个1对多的服务模式,一个loop对应处理多个fd;

       IO多路复用想要做到真正的高效,必须要内核机制提供。因为IO的处理和完成是在内核,如果内核不帮忙,用户态的程序根本无法精确的抓到处理时机;

       fd记得要设置成非阻塞的哦,切记;

       epoll池通过高效的内部管理结构,并且结合操作系统提供的poll事件注册机制,实现了高效的fd事件管理,为高并发的IO处理提供了前提条件;

       epoll全名eventpoll,在Linux内核下以一个文件系统模块的形式实现,所以有人常说epoll其实本身就是文件系统也是对的;

       socketfd,eventfd,timerfd这三种”文件“fd实现了poll接口,所以网络fd,事件fd,定时器fd都可以使用epoll_ctl注册到池子里。我们最常见的就是网络fd的多路复用;

       ext2,ext4,xfs这种真正意义的文件系统反倒没有提供poll接口实现,所以不能用epoll池来管理其句柄。那文件就无法使用epoll机制了吗?不是的,有一个库叫做libaio,通过这个库我们可以间接的让文件使用epoll通知事件,以后详说,此处不表;

后记

       epoll池使用很简洁,但实现不简单。还是那句话,Linux内核帮你包圆了。

       今天并没有罗列源码实现,以很小的思考点为题展开,简单讲了一些epoll的思考,以后有机会可以分享下异步IO(aio)和epoll能产生什么火花?Golang是怎样使用epoll池的?敬请期待哦。

       原创不易,更多干货,关注:奇伢云存储

nginx源码分析--master和worker进程模型

       一、Nginx整体架构

       正常执行中的nginx会有多个进程,其中最基本的是master process(主进程)和worker process(工作进程),还可能包括cache相关进程。

       二、核心进程模型

       启动nginx的主进程将充当监控进程,主进程通过fork()产生的子进程则充当工作进程。

       Nginx也支持单进程模型,此时主进程即是工作进程,不包含监控进程。

       核心进程模型框图如下:

       master进程

       监控进程作为整个进程组与用户的交互接口,负责监护进程,不处理网络事件,不负责业务执行,仅通过管理worker进程实现重启服务、平滑升级、更换日志文件、配置文件实时生效等功能。

       master进程通过sigsuspend()函数调用大部分时间处于挂起状态,直到接收到信号。

       master进程通过检查7个标志位来决定ngx_master_process_cycle方法的运行:

       sig_atomic_t ngx_reap;

       sig_atomic_t ngx_terminate;

       sig_atomic_t ngx_quit;

       sig_atomic_t ngx_reconfigure;

       sig_atomic_t ngx_reopen;

       sig_atomic_t ngx_change_binary;

       sig_atomic_t ngx_noaccept;

       进程中接收到的信号对Nginx框架的意义:

       还有一个标志位:ngx_restart,仅在master工作流程中作为标志位使用,与信号无关。

       核心代码(ngx_process_cycle.c):

       ngx_start_worker_processes函数:

       worker进程

       worker进程主要负责具体任务逻辑,主要关注与客户端或后端真实服务器之间的数据可读/可写等I/O交互事件,因此工作进程的阻塞点在select()、epoll_wait()等I/O多路复用函数调用处,等待数据可读/写事件。也可能被新收到的进程信号中断。

       master进程如何通知worker进程进行某些工作?采用的是信号。

       当收到信号时,信号处理函数ngx_signal_handler()会执行。

       对于worker进程的工作方法ngx_worker_process_cycle,它主要关注4个全局标志位:

       sig_atomic_t ngx_terminate;//强制关闭进程

       sig_atomic_t ngx_quit;//优雅地关闭进程(有唯一一段代码会设置它,就是接受到QUIT信号。ngx_quit只有在首次设置为1时,才会将ngx_exiting置为1)

       ngx_uint_t ngx_exiting;//退出进程标志位

       sig_atomic_t ngx_reopen;//重新打开所有文件

       其中ngx_terminate、ngx_quit、ngx_reopen都将由ngx_signal_handler根据接收到的信号来设置。ngx_exiting标志位仅由ngx_worker_cycle方法在退出时作为标志位使用。

       核心代码(ngx_process_cycle.c):

Nginx面试常问题&工作原理揭秘!

       Nginx面试中常被问到的问题,它是一个以轻量级和高性能著称的反向代理服务器,支持多种协议并具备负载均衡功能。其核心优势在于采用异步非阻塞IO机制和epoll事件驱动模型处理高并发请求。

       Nginx通过异步处理,当请求到来时,worker进程负责初步处理,遇到可能阻塞的操作(如转发请求)时,会注册事件通知,然后继续处理其他请求。这种方式确保了在等待后端响应期间,不会阻塞其他请求的处理。

       区分正向代理和反向代理,前者隐藏客户端信息,后者将请求分发给后端服务器,保护后端服务器安全。Nginx采用多进程而非多线程模式,每个进程独立,确保服务稳定性。

       负载均衡算法中,轮询策略根据服务器权重分配请求,而哈希和响应时间策略则注重性能和缓存效率。通过Nginx模块,可以实现更高级的均衡算法。

       学习Nginx,可以关注一些视频资源,如深入解析Nginx源码和实现Nginx模块。location指令则用于根据请求URL执行不同操作,精确匹配优先,支持正则匹配。

       为了处理高并发,Nginx利用异步非阻塞IO和epoll事件通知,减少I/O操作的阻塞。同时,通过I/O多路复用技术如epoll,避免了轮询的性能瓶颈。

       Nginx的工作模型通常采用多进程,主进程fork子进程处理请求,通过全局锁和SO_REUSEPORT选项,解决惊群问题并实现负载均衡。

Nginx源码分析 - 主流程篇 - 多进程的惊群和进程负载均衡处理

       在探讨Nginx源码分析时,我们关注的是多进程模式下的惊群现象及负载均衡处理。针对惊群现象,Linux2.6版本之后已优化解决。

       惊群现象表示多个进程或线程争夺同一资源时,资源一可用,所有进程或线程都竞争,可能导致资源过度分配和数据混乱。Nginx采用多进程模式,每个进程监听socket accept事件。在Linux2.6版本前,多个进程同时监听同一客户端连接,引发惊群问题。

       Nginx通过核心函数 ngx_process_events_and_timers 实现惊群处理与负载均衡。负载均衡确保一个链接仅由Nginx的一个进程处理,包括accept和read/write事件。惊群处理方面,Nginx采用锁机制管理accept操作,避免同时多个进程尝试接受新连接。

       具体实现包括:

        ngx_process_events_and_timers:核心事件分发函数,处理事件、惊群管理及简单负载均衡。

        ngx_trylock_accept_mutex:获取accept锁,避免并发接受新连接。

        ngx_enable_accept_events & ngx_disable_accept_events:启用与禁用accept事件。

        ngx_event_process_posted:处理已挂起的accept、read事件。

        ngx_process_events:核心事件处理函数,主要关注epoll模型下的ngx_epoll_process_events方法。

       总结而言,Nginx通过精细管理并发操作与资源分配,有效避免惊群现象,并实现高效负载均衡,确保服务器稳定运行。通过源码分析,我们深入理解了Nginx在多进程环境下的优化策略,包括事件分发、锁机制及核心函数的作用,为提升服务器性能提供了有力支持。

Nginx源码分析 - Event事件篇 - Epoll事件模块

       本文重点解析Nginx源码中的epoll事件模块,作为事件模块家族的一员,epoll以其高效性广受开发者喜爱。

       Nginx的epoll事件模块位于源码文件 /event/module/ngx_epoll_module.c 中。

       一、epoll模块的数据结构

       epoll模块包含以下三个关键数据结构:

       ngx_epoll_commands: epoll模块命令集

       ngx_epoll_module_ctx: epoll模块上下文

       ngx_epoll_module: epoll模块配置

       二、epoll模块的初始化

       在配置文件初始化阶段,epoll模块的初始化工作主要在核心函数 ngx_events_block 中完成。

       随后,ngx_event_process_init 函数负责执行模块的初始化操作,ngx_epoll_init 用于具体实现epoll模块的初始化。

       三、核心函数

       epoll模块的关键功能体现在 ngx_epoll_process_events 函数,此函数实现了事件的收集和分发功能,是Nginx处理事件的核心。

       以上是对Nginx源码中epoll事件模块的简要分析。

Nginx源码分析 - Event事件篇 - Nginx的Event事件模块概览

       深入分析Nginx的Event事件模块,从nginx_event.c文件中开始理解事件分发器ngx_process_events_and_timers的机制。在前一章中,我们已经触及到事件模块的一些基础概念,通过这个函数,我们能见到Nginx事件流程的启动。

       本章将全面解析Nginx的event模块,对不熟悉网络IO模型的读者,建议先学习这一领域知识。同时,对于Linux下的epoll模型若感到陌生,请先进行深入学习。一切准备工作完成后,我们便可以开始深入探究。

       在event模块中,几个常见且至关重要的数据结构包括:

       1. ngx_listening_s:此结构专门用于管理监听连接的socket。

       2. ngx_connection_s:存储与连接相关的数据及读写事件。

       3. ngx_event_s:封装了事件处理的相关信息。

       为了帮助大家更深入地理解Nginx源码,推荐以下视频内容:

       视频一:从9个组件开始,教你如何高效阅读nginx源码。

       视频二:深入理解epoll的原理与使用,以及它相较于select/poll的优越性。

       视频三:探讨红黑树在不同场景中的应用,从Linux内核到Nginx源码的关联。

       推荐免费学习资源:Linux C/C++开发(涵盖后端/音视频/游戏/嵌入式/高性能网络/存储/基础架构/安全等领域),获取方法如下:加入群获取C/C++ Linux服务器架构师学习资料(包括C/C++、Linux、golang技术、Nginx、ZeroMQ、MySQL、Redis、fastdfs、MongoDB、ZK、流媒体、CDN、P2P、K8S、Docker、TCP/IP、协程、DPDK、ffmpeg等资料),免费分享。