欢迎来到皮皮网网首页

【3399源码】【rsi优化指标源码】【应用平台 asp 源码】mutex源码解析

来源:queue源码在哪 时间:2024-11-24 14:08:09

1.源码分析: Java中锁的码解种类与特性详解
2.深入解析 go 互斥锁 mutex 源码
3.Rust并发:标准库sync::Once源码分析
4.Go并发编程:goroutine,channel和sync详解
5.深入探秘高性能并发:C++如何在Linux巧妙应用Futex实现线程锁同步(ob_latch.cpp篇)大篇幅(3万字)
6.Nginx源码分析 - 主流程篇 - 多进程的惊群和进程负载均衡处理

mutex源码解析

源码分析: Java中锁的种类与特性详解

       在Java中存在多种锁,包括ReentrantLock、码解Synchronized等,码解它们根据特性与使用场景可划分为多种类型,码解如乐观锁与悲观锁、码解可重入锁与不可重入锁等。码解3399源码本文将结合源码深入分析这些锁的码解设计思想与应用场景。

       锁存在的码解意义在于保护资源,防止多线程访问同步资源时出现预期之外的码解错误。举例来说,码解当张三操作同一张银行卡进行转账,码解如果银行不锁定账户余额,码解可能会导致两笔转账同时成功,码解违背用户意图。码解因此,码解在多线程环境下,锁机制是必要的。

       乐观锁认为访问资源时不会立即加锁,仅在获取失败时重试,通常适用于竞争频率不高的场景。乐观锁可能影响系统性能,故在竞争激烈的场景下不建议使用。Java中的乐观锁实现方式多基于CAS(比较并交换)操作,如AQS的锁、ReentrantLock、CountDownLatch、Semaphore等。CAS类实现不能完全保证线程安全,使用时需注意版本号管理等潜在问题。rsi优化指标源码

       悲观锁则始终在访问同步资源前加锁,确保无其他线程干预。ReentrantLock、Synchronized等都是典型的悲观锁实现。

       自旋锁与自适应自旋锁是另一种锁机制。自旋锁在获取锁失败时采用循环等待策略,避免阻塞线程。自适应自旋锁则根据前一次自旋结果动态调整等待时间,提高效率。

       无锁、偏向锁、轻量级锁与重量级锁是Synchronized的锁状态,从无锁到重量级锁,锁的竞争程度与性能逐渐增加。Java对象头包含了Mark Word与Klass Pointer,Mark Word存储对象状态信息,而Klass Pointer指向类元数据。

       Monitor是实现线程同步的关键,与底层操作系统的Mutex Lock相互依赖。Synchronized通过Monitor实现,其效率在JDK 6前较低,但JDK 6引入了偏向锁与轻量级锁优化性能。

       公平锁与非公平锁决定了锁的分配顺序。公平锁遵循申请顺序,非公平锁则允许插队,提高锁获取效率。

       可重入锁允许线程在获取锁的同一节点多次获取锁,而不可重入锁不允许。应用平台 asp 源码共享锁与独占锁是另一种锁分类,前者允许多个线程共享资源,后者则确保资源的独占性。

       本文通过源码分析,详细介绍了Java锁的种类与特性,以及它们在不同场景下的应用。了解这些机制对于多线程编程至关重要。此外,还有多种机制如volatile关键字、原子类以及线程安全的集合类等,需要根据具体场景逐步掌握。

深入解析 go 互斥锁 mutex 源码

       互斥锁是并发控制的基石,用于避免多线程竞争带来的数据不一致性问题。以加法运算为例,若不使用互斥锁,多个线程同时执行加法操作可能导致数据覆盖,结果不准确。互斥锁(Mutex)确保在同一时刻只有一个线程访问共享资源。

       在互斥锁的源码解析中,我们关注几个核心问题:饥饿问题、性能优化、锁的创建与操作。

       互斥锁通常会经历几代优化,以提升性能与公平性。例如,当一个线程在等待获取锁时,系统可能选择将锁直接分配给等待时间最长的线程(饥饿模式),以确保所有线程都有机会访问共享资源。牛魔王牛牛源码在正常模式下,锁的分配遵循先入先出的原则,以提升性能。这些模式的选择和切换依赖于互斥锁内部的状态。

       互斥锁的实现涉及位运算,如位与(&)、位或(|)、位异或(^)等操作。这些位操作用于管理锁的状态,如判断锁是否被持有、锁是否处于饥饿状态等。

       在使用互斥锁时,需要注意几个常见错误:锁重入、锁拷贝和死锁。锁重入允许同一线程多次获取同一锁,无需阻塞。锁拷贝则涉及锁的复制,需确保复制时不破坏锁的状态。死锁是由于线程间循环等待资源而导致的僵局,需通过合理设计避免。

       在并发编程中,正确使用互斥锁至关重要,需遵循“谁申请,谁释放”的原则,避免锁的不当释放导致的不可预期行为。对于更高级的锁机制,如自旋锁、阻塞锁和排他锁,视频上传 网站源码它们在并发控制中发挥着不同的作用,提供了不同程度的性能优化和安全保证。

       此外,信号量(semaphore)是一种常见的同步工具,用于协调并发操作。它提供了类似于互斥锁的功能,但允许更细粒度的控制,如允许多个读锁而只允许一个写锁。信号量的实现通常依赖于系统调用,如Linux的futex,或在Go中使用专门的同步库。

       总体而言,互斥锁是并发编程中不可或缺的工具,正确理解和使用它们能够有效管理并发问题,确保程序的正确性和稳定性。

Rust并发:标准库sync::Once源码分析

       一次初始化同步原语Once,其核心功能在于确保闭包仅被执行一次。常见应用包括FFI库初始化、静态变量延迟初始化等。

       标准库中的Once实现更为复杂,其关键在于如何高效地模拟Mutex阻塞与唤醒机制。这一机制依赖于线程暂停和唤醒原语thread::park/unpark,它们是实现多线程同步对象如Mutex、Condvar等的基础。

       具体实现中,Once维护四个内部状态,状态与等待队列头指针共同存储于AtomicUsize中,利用4字节对齐优化空间。

       构造Once实例时,初始化状态为Incomplete。调用Once::call_once或Once::call_once_force时,分别检查是否已完成初始化,未完成则执行闭包,闭包执行路径标记为冷路径以节省资源,同时避免泛型导致的代码膨胀。

       闭包执行逻辑由Once::call_inner负责,线程尝试获取执行权限,未能获取则进入等待状态,获取成功后执行闭包,结束后唤醒等待线程。

       等待队列通过无锁侵入式链表实现,节点在栈上分配,以优化内存使用。Once::wait函数实现等待线程逻辑,WaiterQueue的drop方法用于唤醒所有等待线程,需按特定顺序操作栈节点,以避免use after free等潜在问题。

       思考题:如何在实际项目中利用Once实现资源安全共享?如何评估Once与Mutex等同步原语在不同场景下的性能差异?

Go并发编程:goroutine,channel和sync详解

       ä¼˜é›…的并发编程范式,完善的并发支持,出色的并发性能是Go语言区别于其他语言的一大特色。

       åœ¨å½“今这个多核时代,并发编程的意义不言而喻。使用Go开发并发程序,操作起来非常简单,语言级别提供关键字go用于启动协程,并且在同一台机器上可以启动成千上万个协程。

       ä¸‹é¢å°±æ¥è¯¦ç»†ä»‹ç»ã€‚

goroutine

       Go语言的并发执行体称为goroutine,使用关键词go来启动一个goroutine。

       go关键词后面必须跟一个函数,可以是有名函数,也可以是无名函数,函数的返回值会被忽略。

       go的执行是非阻塞的。

       å…ˆæ¥çœ‹ä¸€ä¸ªä¾‹å­ï¼š

packagemainimport("fmt""time")funcmain(){ gospinner(*time.Millisecond)constn=fibN:=fib(n)fmt.Printf("\rFibonacci(%d)=%d\n",n,fibN)//Fibonacci()=}funcspinner(delaytime.Duration){ for{ for_,r:=range`-\|/`{ fmt.Printf("\r%c",r)time.Sleep(delay)}}}funcfib(xint)int{ ifx<2{ returnx}returnfib(x-1)+fib(x-2)}

       ä»Žæ‰§è¡Œç»“果来看,成功计算出了斐波那契数列的值,说明程序在spinner处并没有阻塞,而且spinner函数还一直在屏幕上打印提示字符,说明程序正在执行。

       å½“计算完斐波那契数列的值,main函数打印结果并退出,spinner也跟着退出。

       å†æ¥çœ‹ä¸€ä¸ªä¾‹å­ï¼Œå¾ªçŽ¯æ‰§è¡Œæ¬¡ï¼Œæ‰“印两个数的和:

packagemainimport"fmt"funcAdd(x,yint){ z:=x+yfmt.Println(z)}funcmain(){ fori:=0;i<;i++{ goAdd(i,i)}}

       æœ‰é—®é¢˜äº†ï¼Œå±å¹•ä¸Šä»€ä¹ˆéƒ½æ²¡æœ‰ï¼Œä¸ºä»€ä¹ˆå‘¢ï¼Ÿ

       è¿™å°±è¦çœ‹Go程序的执行机制了。当一个程序启动时,只有一个goroutine来调用main函数,称为主goroutine。新的goroutine通过go关键词创建,然后并发执行。当main函数返回时,不会等待其他goroutine执行完,而是直接暴力结束所有goroutine。

       é‚£æœ‰æ²¡æœ‰åŠžæ³•è§£å†³å‘¢ï¼Ÿå½“然是有的,请往下看。

channel

       ä¸€èˆ¬å†™å¤šè¿›ç¨‹ç¨‹åºæ—¶ï¼Œéƒ½ä¼šé‡åˆ°ä¸€ä¸ªé—®é¢˜ï¼šè¿›ç¨‹é—´é€šä¿¡ã€‚常见的通信方式有信号,共享内存等。goroutine之间的通信机制是通道channel。

       ä½¿ç”¨make创建通道:

ch:=make(chanint)//ch的类型是chanint

       é€šé“支持三个主要操作:send,receive和close。

ch<-x//发送x=<-ch//接收<-ch//接收,丢弃结果close(ch)//关闭无缓冲channel

       make函数接受两个参数,第二个参数是可选参数,表示通道容量。不传或者传0表示创建了一个无缓冲通道。

       æ— ç¼“冲通道上的发送操作将会阻塞,直到另一个goroutine在对应的通道上执行接收操作。相反,如果接收先执行,那么接收goroutine将会阻塞,直到另一个goroutine在对应通道上执行发送。

       æ‰€ä»¥ï¼Œæ— ç¼“冲通道是一种同步通道。

       ä¸‹é¢æˆ‘们使用无缓冲通道把上面例子中出现的问题解决一下。

packagemainimport"fmt"funcAdd(x,yint,chchanint){ z:=x+ych<-z}funcmain(){ ch:=make(chanint)fori:=0;i<;i++{ goAdd(i,i,ch)}fori:=0;i<;i++{ fmt.Println(<-ch)}}

       å¯ä»¥æ­£å¸¸è¾“出结果。

       ä¸»goroutine会阻塞,直到读取到通道中的值,程序继续执行,最后退出。

缓冲channel

       åˆ›å»ºä¸€ä¸ªå®¹é‡æ˜¯5的缓冲通道:

ch:=make(chanint,5)

       ç¼“冲通道的发送操作在通道尾部插入一个元素,接收操作从通道的头部移除一个元素。如果通道满了,发送会阻塞,直到另一个goroutine执行接收。相反,如果通道是空的,接收会阻塞,直到另一个goroutine执行发送。

       æœ‰æ²¡æœ‰æ„Ÿè§‰ï¼Œå…¶å®žç¼“冲通道和队列一样,把操作都解耦了。

单向channel

       ç±»åž‹chan<-int是一个只能发送的通道,类型<-chanint是一个只能接收的通道。

       ä»»ä½•åŒå‘通道都可以用作单向通道,但反过来不行。

       è¿˜æœ‰ä¸€ç‚¹éœ€è¦æ³¨æ„ï¼Œclose只能用在发送通道上,如果用在接收通道会报错。

       çœ‹ä¸€ä¸ªå•å‘通道的例子:

packagemainimport"fmt"funccounter(outchan<-int){ forx:=0;x<;x++{ out<-x}close(out)}funcsquarer(outchan<-int,in<-chanint){ forv:=rangein{ out<-v*v}close(out)}funcprinter(in<-chanint){ forv:=rangein{ fmt.Println(v)}}funcmain(){ n:=make(chanint)s:=make(chanint)gocounter(n)gosquarer(s,n)printer(s)}sync

       sync包提供了两种锁类型:sync.Mutex和sync.RWMutex,前者是互斥锁,后者是读写锁。

       å½“一个goroutine获取了Mutex后,其他goroutine不管读写,只能等待,直到锁被释放。

packagemainimport("fmt""sync""time")funcmain(){ varmutexsync.Mutexwg:=sync.WaitGroup{ }//主goroutine先获取锁fmt.Println("Locking(G0)")mutex.Lock()fmt.Println("locked(G0)")wg.Add(3)fori:=1;i<4;i++{ gofunc(iint){ //由于主goroutine先获取锁,程序开始5秒会阻塞在这里fmt.Printf("Locking(G%d)\n",i)mutex.Lock()fmt.Printf("locked(G%d)\n",i)time.Sleep(time.Second*2)mutex.Unlock()fmt.Printf("unlocked(G%d)\n",i)wg.Done()}(i)}//主goroutine5秒后释放锁time.Sleep(time.Second*5)fmt.Println("readyunlock(G0)")mutex.Unlock()fmt.Println("unlocked(G0)")wg.Wait()}

       RWMutex属于经典的单写多读模型,当读锁被占用时,会阻止写,但不阻止读。而写锁会阻止写和读。

packagemainimport("fmt""sync""time")funcmain(){ varrwMutexsync.RWMutexwg:=sync.WaitGroup{ }Data:=0wg.Add()fori:=0;i<;i++{ gofunc(tint){ //第一次运行后,写解锁。//循环到第二次时,读锁定后,goroutine没有阻塞,同时读成功。fmt.Println("Locking")rwMutex.RLock()deferrwMutex.RUnlock()fmt.Printf("Readdata:%v\n",Data)wg.Done()time.Sleep(2*time.Second)}(i)gofunc(tint){ //写锁定下是需要解锁后才能写的rwMutex.Lock()deferrwMutex.Unlock()Data+=tfmt.Printf("WriteData:%v%d\n",Data,t)wg.Done()time.Sleep(2*time.Second)}(i)}wg.Wait()}总结

       å¹¶å‘编程算是Go的特色,也是核心功能之一了,涉及的知识点其实是非常多的,本文也只是起到一个抛砖引玉的作用而已。

       æœ¬æ–‡å¼€å§‹ä»‹ç»äº†goroutine的简单用法,然后引出了通道的概念。

       é€šé“有三种:

       æ— ç¼“冲通道

       ç¼“冲通道

       å•å‘通道

       æœ€åŽä»‹ç»äº†Go中的锁机制,分别是sync包提供的sync.Mutex(互斥锁)和sync.RWMutex(读写锁)。

       goroutine博大精深,后面的坑还是要慢慢踩的。

       æ–‡ç« ä¸­çš„脑图和源码都上传到了GitHub,有需要的同学可自行下载。

       åœ°å€ï¼šgithub.com/yongxinz/gopher/tree/main/sc

       ä½œè€…:yongxinz

深入探秘高性能并发:C++如何在Linux巧妙应用Futex实现线程锁同步(ob_latch.cpp篇)大篇幅(3万字)

       通过实例学习C++的Futex应用,理解线程锁同步在OceanBase 4.0源码中的巧妙使用

       这篇文章详细介绍了如何在Linux环境下,利用C++的Futex实现线程锁同步,以开源项目ob_latch.cpp为例,探讨了自旋锁、互斥锁和等待队列的实现和优缺点。

       1. 自旋锁分析:通过low_try_lockA,自旋次数由max_spin_cnt控制,避免CPU资源浪费。

       2. 互斥锁-ObLatchMutex:提供try_lock, lock, wait三种加锁方式,分别对应不同的场景和策略。

       3. ObLatchWaitQueue:管理等待队列,确保公平调度,如wait阻塞锁的使用和唤醒机制。

       4. 锁的解锁逻辑:如ObLatchMutex的unlock,通过原子操作移除或减少锁的持有计数,必要时唤醒等待队列。

       5. 高级锁封装:如ObLatchWGuard等RAII类,自动管理锁的生命周期,确保资源安全。

       通过以上组件的组合,开发者可以灵活设计线程同步机制,保证多线程环境下资源访问的正确性和效率。

       如果你在项目中设计线程锁,可以根据这些原理和实例进行调整和优化。

Nginx源码分析 - 主流程篇 - 多进程的惊群和进程负载均衡处理

       在探讨Nginx源码分析时,我们关注的是多进程模式下的惊群现象及负载均衡处理。针对惊群现象,Linux2.6版本之后已优化解决。

       惊群现象表示多个进程或线程争夺同一资源时,资源一可用,所有进程或线程都竞争,可能导致资源过度分配和数据混乱。Nginx采用多进程模式,每个进程监听socket accept事件。在Linux2.6版本前,多个进程同时监听同一客户端连接,引发惊群问题。

       Nginx通过核心函数 ngx_process_events_and_timers 实现惊群处理与负载均衡。负载均衡确保一个链接仅由Nginx的一个进程处理,包括accept和read/write事件。惊群处理方面,Nginx采用锁机制管理accept操作,避免同时多个进程尝试接受新连接。

       具体实现包括:

        ngx_process_events_and_timers:核心事件分发函数,处理事件、惊群管理及简单负载均衡。

        ngx_trylock_accept_mutex:获取accept锁,避免并发接受新连接。

        ngx_enable_accept_events & ngx_disable_accept_events:启用与禁用accept事件。

        ngx_event_process_posted:处理已挂起的accept、read事件。

        ngx_process_events:核心事件处理函数,主要关注epoll模型下的ngx_epoll_process_events方法。

       总结而言,Nginx通过精细管理并发操作与资源分配,有效避免惊群现象,并实现高效负载均衡,确保服务器稳定运行。通过源码分析,我们深入理解了Nginx在多进程环境下的优化策略,包括事件分发、锁机制及核心函数的作用,为提升服务器性能提供了有力支持。

C++ shared_mutex应用以及源码解析

       在实际应用中,处理并发问题是开发实践中的一大挑战。当多个线程同时访问同一资源时,数据竞态问题便随之而来。为了解决此问题,互斥量(mutex)应运而生,它允许同一时刻只有一个线程访问临界资源,实现资源访问的排他性。

       当线程间的读写操作频率不一致时,常规的互斥量无法满足高效访问的需求。此时,共享互斥锁(shared_mutex)成为了解决方案,它允许多个线程同时读取资源,而写操作则需要独占资源。这尤其适用于读操作频繁而写操作不频繁的场景,能显著提升程序效率。

       下面,我们通过代码实例来探讨共享互斥锁的使用。定义读写锁时,首先引入`std::shared_mutex`。通过`std::shared_lock`操作,可以以共享方式立即获取锁,或在构造时以独占方式上锁。锁的释放则在析构函数中完成。

       三个线程的示例代码展示了读写操作的并发执行。运行结果显示,读操作线程得到的临界资源值准确无误,证明了共享互斥锁在读操作并发时的正确性。然而,读操作线程的输出显示了一定程度的混乱,这并非共享互斥锁的问题,而是输出流操作的并发性导致的。

       深入源码解析,我们可以发现`std::shared_lock`和`std::unique_lock`的实现细节。两者均使用RAII技术进行锁管理,但共享锁允许以共享或独占方式获取锁,而独占锁仅允许独占获取。源码中展示了锁的上锁和解锁过程,以及内部状态管理,包括持有锁状态的判断和更新。

       共享互斥锁的底层实现基于`shared_mutex_base`类,通过一组成员变量和API封装了锁的管理逻辑。尝试加锁和解锁过程体现了锁的非阻塞特性。在进行锁的释放时,需要考虑共享持有状态,确保锁的正确释放。

       总结而言,共享互斥锁提供了高效且灵活的并发控制机制,适用于读操作频繁、写操作不频繁的场景。通过深入源码解析,我们能够更全面地理解锁的实现细节和工作原理,从而在实际开发中更加有效地应用共享互斥锁,解决并发问题。