1.ģ?模拟???Դ??
2.Dynamixel伺服舵机控制
3.自动饮水机代码
4.聆思CSK6 视觉AI开发套件试用头肩、手势识别体验与PWM舵机控制
5.物联网+车联网实验箱 物联网实验室建设设备
ģ?舵机???Դ??
智能垃圾桶项目案例,采用华清远见鸿蒙基础套餐(Hi鸿蒙开发板)+雷达控制模块(含舵机)作为硬件平台。源码项目功能设计如下:
1. **感应功能**:通过红外感应或微波感应技术,模拟当有物体或手靠近感应区时,舵机盖子自动开启,源码多线程的源码离开后自动关闭,模拟实现无需手动或脚踩操作。舵机
2. **卫生与环保**:减少细菌传播,源码避免异味和蚊虫滋生,模拟降低环境污染,舵机通过自动关闭功能减少能耗。源码
项目实现内容包括:人体与垃圾桶的模拟距离感知、OLED显示屏状态显示、舵机人体靠近时自动开启盖子,源码远离时自动关闭。
技术点涉及:人体距离感知技术、OLED显示屏驱动、智能设备自动化控制。
项目整体框架:硬件平台搭建、传感器与执行器连接、软件编程实现功能。
硬件平台:FS-Hi鸿蒙开发板,配备丰富的板载资源与拓展模块,支持鸿蒙系统。
开发板优势:适用于物联网教学、学生毕设、个人学习及竞赛,配套教程、视频课程与项目案例。
项目源码与文档领取:添加小元老师微信号(yyzlab),获取智能垃圾桶项目完整配套文档及源码,还有鸿蒙物联网开发板相关资料。
Dynamixel伺服舵机控制
舵机,作为一种电机执行器,具备角度持续变化与保持输出的特性。我最早接触舵机是在制作固定翼模型飞机时,利用KT泡沫板裁剪、热熔胶固定机身,安装无刷电机在机头,以及两翼和尾翼上的舵机,分别控制副翼和航向。当时由于是论坛免费源码学生,预算有限,常用的是9克SG塑料舵机和银燕ESMAII,它们轻便、成本低且适合小型负载。这类舵机通过单片机输出PWM信号控制,但资源消耗高,不适合精细控制的机器人。
AX-A伺服舵机是更高级的选择,它具备精准的位置和速度控制、柔性驱动、状态反馈、系统报警、总线通讯与分布式控制等特点。本文将以Dynamixel AX-A伺服舵机为例,使用STMF控制器,详细讲解其控制原理、方法与代码,适用于Dynamixel其他系列舵机。
AX-A的通讯协议需要通过总线将多个不同ID的舵机连接,控制器发送指令包至舵机,舵机反馈状态包回传。指令包格式包括帧头、ID、长度、执行指令码、附加信息与校验码。配置USART3作为串口,设置波特率为,广播ID(0xFE)用于设置舵机波特率。指令包由帧头、ID、长度、指令码(0x)、写入地址(0x)与目标值(0x)组成,通过计算校验码确保通信准确性。设置函数BaudRateSetup()实现波特率同步。
为了知道每个舵机的ID,可以采用广播ID(0xFE)进行ID设置,通过读写EEPROM区地址3的ID条目来定制ID值。设置函数SetID()使用类似方法实现,包含ID地址、写入值与校验码。源码制作编辑指示灯设置函数SetLED()通过RAM区地址的值控制指示灯状态。
完成舵机配置后,通过硬件电路连接,包括USART3的PB与舵机data线、3S航模电池供电。主函数调用配置函数后,指示灯由熄灭变为红色常亮,表明波特率和ID设置成功。
AX-A舵机有两种工作模式:轮子模式与关节模式。轮子模式实现°无限旋转,关节模式则在设定角度内运动。通过代码实现这两种模式的切换,展示舵机的灵活性与控制能力。
完整示例代码包含头文件和源代码,具体实现步骤请参考数据手册与以上介绍,编写功能丰富的控制函数。
自动饮水机代码
自动饮水机是一种智能化设备,可以自动控制水的输送和消耗,为人们带来了极大的便利。下面是一种可能的自动饮水机代码:#include //加载Servo库来控制水龙头舵机
Servo waterTap; //定义龙头舵机对象
#define sensorPin A0 //定义水位传感器引脚
#define highWaterLevel //定义高水位线
#define mediumWaterLevel //定义中水位线
#define lowWaterLevel //定义低水位线
void setup() {
pinMode(sensorPin, INPUT); //设置传感器引脚为输入模式
waterTap.attach(9); //将龙头舵机连接至9号引脚
void loop() {
int waterLevel = analogRead(sensorPin); //从传感器读取水位
if (waterLevel>= highWaterLevel) { //高水位,不供水
waterTap.write(0); //关闭水龙头
}
else if (waterLevel = mediumWaterLevel) { //中水位,慢供水
waterTap.write(); //开启水龙头至度
delay(); //延迟1s
waterTap.write(0); //关闭水龙头
delay(); //延迟s
}
else if (waterLevel = lowWaterLevel) { //低水位,快供水
waterTap.write(); //开启水龙头至度
delay(); //延迟0.5s
waterTap.write(0); //关闭水龙头
delay(); //延迟s
}
else { //水不足,不供水
waterTap.write(0); //关闭水龙头
代码的作用是通过水位传感器读取水桶中的水位,根据不同的水位线来控制龙头舵机的开启和关闭。当水位高于高水位线时,龙头舵机不供水;当水位在高水位线和中水位线之间时,龙头舵机慢供水,每秒钟开启一次,持续1秒钟;当水位在中水位线和低水位线之间时,龙头舵机快供水,每秒钟开启一次,持续0.5秒钟;当水位低于低水位线时,龙头舵机不供水。
聆思CSK6 视觉AI开发套件试用头肩、手势识别体验与PWM舵机控制
聆思科技与极术社区联合组织的CSK6视觉AI开发套件活动已让《酷电玩家》带来了深度的开发体验。本次分享针对AI识别应用与PWM舵机控制两大功能进行全面介绍,并通过步骤分解详述实现过程。环境搭建
首先,通过官方文档指引,在环境搭建部分完成以下步骤:下载Git并安装,返还网源码安装lisa zep工具以初始化CSK6 SDK开发环境,然后进行开发环境验证。获取源码
操作中使用Git获取Sample项目与SDK到本地环境,可自动完成初始化。AI案例体验
通过VSCODE打开项目结构,其中prj.conf文件是工程配置的关键。更改配置CONFIG_WEBUSB=n至CONFIG_WEBUSB=y,以便在后续测试阶段使用PC工具预览功能。接下来,完成固件编译与烧录,并通过USB接口烧录至CSK6开发板。安装与调试工具
工具预览使用Edge浏览器加载csk_view_finder_spd/src目录下index.html页面。完成Windows系统驱动安装,确保CSK6 USB端口能被系统识别。PWM舵机控制
对于引脚定义与设备树概念,开发者在.sdk\zephyr\dts文件中获取详细信息。选择适合的PWM通道与引脚(例如GPIOB , GPIOB 等),并在主程序中配置PWM控制与舵机驱动代码。总结
上述步骤涵盖CSK6视觉AI开发套件的基本操作,从环境搭建、代码获取到AI应用体验与PWM舵机控制实现。结合头肩识别与坐标信息,进一步实现动态头肩跟踪功能成为可能。完整代码实现与进阶功能探索请参阅官方文档。物联网+车联网实验箱 物联网实验室建设设备
实验箱箱体外观尺寸:**(mm),采用铝合金楔形结构设计。
物联网实验平台与箱体结构相同,尺寸**(mm),也采用铝合金楔形结构。平台采用一体式供电结构,实验过程仅需连接一根电源线和数据线。
教学模式革新,采用磁吸积木式,模块间可叠罗汉式组装,支持多层模块叠加,无需额外数据线与电源线连接。
提供5V供电接口(Type-C)、以太网接口、双路USB接口、J-link下载器接口、CC-Debugger下载器接口、RS/RS串口。matlab norm源码J-link下载器与CC-Debugger下载器集成于平台内部,下载程序时只需吸附到对应端口即可,无需接线。
内置USB串口服务设备,通过1路USB虚拟出多路串口,最多可扩展8路串口接口,包含普通TTL串口4路与串口4路。
实验平台配备8个通用实验模块插槽,每个插槽集成路接触点,用于模块间数据通讯与供电,且具备防短路功能,最多支持8个模块联动实验。
平台集成多种功能键,如选择键、ZigBee仿真器复位键、J-Link仿真器启动键与虚拟仪器启动键,便于切换与使用不同功能。内部还原功能模块可快速恢复出厂设置。
提供3.3V/5V供电底板,为上层模块持续供电。
嵌入式STM处理器采用STMF,内核为位的Cortex™-M3 CPU,最高工作频率MHz,存储器包括K至K字节的闪存、6K至K字节的SRAM,支持USB、CAN、6个定时器、2个ADC与6个通信接口。
支持USB、CAN、6个定时器、2个ADC与6个通信接口。提供选择端、BOOT0接口,内置1个复位键。程序下载方式为实验平台内部下载,无需外部接线,带有电源保护电路。
ZigBee无线通信模块采用CCF主芯片,内置单片机及无线收发器,支持-信道更改,点播、组播、广播数据通信,自动组网及网络自愈功能。支持-bps多种速率,工作在2.4GHz无线频率,遵循ZigBee/PRO无线协议,使用UART通讯接口。无障碍传输距离可达米,可通过跳线切换通讯线路。
Wifi无线通信模块集成MAC、基频芯片与射频收发单元,支持WiFi@2.4GHz.b/g/n标准,WEP/WPA-PSK/WPA2-PSK安全模式。支持AP、STA、AP+STA工作模式,提供串口转无线TCP/UDP传输功能,支持TCP/UDPClient注册包机制,集成快速联网配置与AT+指令集配置。具有串口切换功能,通过跳线切换通讯线路。能够通过WiFi无线节点将传感器数据传入云端。
UHF超高频模块工作在MHz频率,最大读卡距离可达M,采用陶瓷天线,增益DBi,最大功率W。使用超高频RFID专用芯片与先进DSP技术,支持EPCC1/GEN2/ISO-6C与ISO -6B多协议,软件可调输出功率dBm~dBm,全面支持国际常用超高频RFID标准。
LF低频模块工作频率为Khz-.2KHz,采用非接触式IC卡读写器设计,读卡速度快,最大读写距离可达CM,符合ISO/标准,支持TK、GK、EM及其兼容芯片,支持TEMIC 、ATA、ATA,支持hitag-s,EM、EM、EM。
空气温湿度传感器采用DHT,温度检测范围0-度,精确到0.5℃,湿度检测范围%RH-%RH,精确到2%RH,支持电容型湿度传感实验,提供湿度值脉冲信号输出,输出形式为数字量。
光照度传感器采用ROHM原装BHFVI芯片,输出形式为数字量与模拟量,使用LM电压比较器工作稳定,光照度范围0-lx,内置bitAD转换器,直接数字输出,提供高精度测定,接近视觉灵敏度的分光特性。
人体红外传感器采用SR感应传感器,感应距离可达0-5M,支持红外对射与红外漫反射传感实验,提供模拟量信号输出。
气体传感器采用MQ系列半导体气敏元件,支持1路数字量输出与1路模拟量AD输出,灵敏度可调,检测浓度范围-ppm。
火焰传感器探测角度为°,检测波长nm-nm,输出形式为开关量,支持灵敏度调整。
红外对射传感器采用H直射型光电传感器,槽宽mm,使用LM电压比较器工作稳定,具有信号输出指示灯,输出形式为开关量。
限位器执行器采用工业生产的机械限位器,触发后可选择高电平或低电平输出形式,提供双路限位器,支持外接设备控制,提供NO、COM、NC三路输出端。
双路继电器执行器采用5V控制继电器,实现双路控制开关,继电器规格为3A-VAC、3A-VDC,提供NO、COM、NC三路输出端与双路指示灯,显示继电器状态。
舵机执行器采用单路舵机控制器,实现云台自由转动,工作扭矩1.6kg/cm,转动速度为0.-0.秒/°,通过PMW信号传输,舵机运转角度0-°,可通过编程实现自由运转。
风扇模块提供1路直流风扇,支持单片机和外接电路两种控制方式,工作电流0.-0.A,转速RPM,风量2.CFM,可通过编程实现开关控制。
语音播报模块提供3W/4Ω语音播报喇叭,支持MP3、WAV解码格式,支持采样率(Khz)8/.///.///.1/,板载Mbit(4MByte)flash存储,可通过USB连接更新音频文件。
LED红绿灯模块工作电压为5V,提供红黄绿3路LED灯,与智能小车配合使用,可实现模拟红绿灯功能。集成数码管,实时显示红绿灯倒计时。通过编程可实现灯光顺序、时间控制及倒计时等功能。
智能小车采用4个独立的减速电机控制,型号GA-N,额定负载g.cm,板载7.4V大容量锂电池,电池容量 mA,带有电源开关与电池保护功能,集成电量显示模组,实时显示电池电量。提供路弹性插针接触点,支持磁吸连接方式与不同模块连接,实现不同功能。提供小车处理器模块,采用STMFC8T6处理器,可与小车主板磁吸连接。提供三种运动模式硬件,通过与集成的ACC智能寻迹接口和磁吸接触点进行连接,实现红外避障自动驾驶、红外巡线自动驾驶及磁性巡线自动驾驶。
智能小车处理器模块采用STMFC8T6处理器,支持程序下载与修改,可进行二次开发。提供选择端与BOOT0插针,1路复位按键与TX1、RX1、TX3、RX3四路数据收发指示灯。
自动驾驶碰撞预警传感器采用模块化设计,支持磁吸连接与智能小车拆卸,提供4路独立红外收发探头,可从4个不同方向进行避障,减少死角,灵敏度可通过电位器调整,水平方向感应距离为2-cm。左右双路避障指示灯亮起时,小车反向转动。使用LM电压比较器工作稳定。
自动驾驶磁性巡线传感器同样采用模块化设计,支持磁吸连接与智能小车拆卸,提供4路独立TCRT光电传感器模组,探测面积更大,保障循迹行驶,灵敏度通过电位器调整,距地面感应距离为1mm-8mm。每个传感器对应1路状态指示灯,当被触发时熄灭。
自动驾驶红外巡线传感器采用模块化设计,支持磁吸连接与智能小车拆卸,提供4路独立电感元件与1路电位调节器,可调节电磁感应灵敏度,电感容量为uH。提供3路独立红外收发探头与1路电位调节器,调节红外感应距离。提供6路传感器状态指示灯,实时显示触发状态。
AI摄像识别模块采用人工智能AI核心模组,内置常用算法模型,支持个GPIO与个专用IO接口。提供2.4寸LCD显示屏与1路万高清摄像头模组,支持最大*分辨率。可拓展TF卡,通过编程实现车牌识别、实时画面显示及图像识别等功能。
公有云平台支持多种通讯方式,如5G(NB-IOT)、4G、GPRS、Lora、WiFi,将教学传感器模块接入云端,实现对工业生产环境数据全面监控。采用Modbus协议,可将工业级别传感器移植到教学实践,并提供源代码,帮助学生与社会接轨。支持多种设备无线模块,将传感器数据直接采集到云端显示。具备云组态设置功能,手机接收传感器报警信息,支持微信小程序显示组态内容及控制设备。
2024-11-30 05:15
2024-11-30 04:29
2024-11-30 04:04
2024-11-30 03:54
2024-11-30 03:48
2024-11-30 03:42