皮皮网
皮皮网
安卓倒车实现源码

【仿链家网站源码】【听书php源码下载】【apollo源码哪里下载】libsvm源码解析

时间:2025-01-19 08:06:02 分类:知识 编辑:源码怎么查
1.LIBSVM概述补充
2.LIBSVM使用手册
3.如何利用python使用libsvm

libsvm源码解析

LIBSVM概述补充

       SVM(支持向量机)在模式识别或回归任务中广泛应用,源码但其方法、解析参数选择和核函数及其参数的源码选取,国际上尚未形成统一模式。解析最优SVM算法参数选择往往依赖于经验、源码实验对比、解析仿链家网站源码广泛搜索,源码或利用软件包提供的解析交互检验功能。LIBSVM,源码作为广泛使用的解析支持向量机软件包,提供了Java、源码Matlab、解析C#、源码Ruby、解析Python、源码听书php源码下载R、Perl、Common LISP、Labview等多种语言版本。其中,Matlab、Java和命令行版本最为常用,apollo源码哪里下载相关资源可在林智仁(Lin Chih-Jen)的主页上找到链接。

       LIBSVM的多语言版本覆盖了不同开发者和研究者的编程需求,提高了软件的适用性和灵活性。SVM参数选择的复杂性促使用户在实践中积累经验和使用软件辅助功能。在模式识别或回归任务中,准确的参数设置对SVM模型的性能至关重要,而LIBSVM提供了丰富的点评投票app源码工具和资源,以支持用户在不同编程环境下进行优化探索。

       LIBSVM的不同语言版本,如Java、Matlab、C#等,为开发者提供了不同编程环境下的支持向量机解决方案。这些版本不仅支持模型训练和预测,临沂源码建站还提供了对SVM参数调整、模型评估等关键功能的支持。对于使用Matlab、Java等语言进行数据分析和机器学习的用户,LIBSVM的特定版本提供了直接集成的便利,简化了模型开发流程。

       值得一提的是,LIBSVM的命令行版本提供了在没有图形用户界面(GUI)环境下的高效操作方式,适用于自动化任务、批处理操作或在资源受限的系统上运行。这种版本的灵活性使其在各种应用场景中得以广泛运用,尤其是在需要高效处理大规模数据集时。

       总之,LIBSVM通过提供多样化的语言版本,满足了不同开发者和研究者在模式识别和回归任务中的需求。随着实践的积累和算法的不断优化,LIBSVM成为了支持向量机领域中不可或缺的工具,为用户提供了强大的参数调整和模型构建能力,从而在复杂的数据分析任务中取得了显著成果。

扩展资料

       LIBSVM是台湾大学林智仁(Lin Chih-Jen)副教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件包可在puted kernel (kernel values in training_set_file)

       -d degree : set degree in kernel function (default 3)

       -g gamma : set gamma in kernel function (default 1/num_features)

       -r coef0 : set coef0 in kernel function (default 0)

       -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

       -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)

       -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)

       -m cachesize : set cache memory size in MB (default )

       -e epsilon : set tolerance of termination criterion (default 0.)

       -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)

       -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)

       -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)

       -v n: n-fold cross validation mode

       -q : quiet mode (no outputs)

       ä¸‰æé«˜é¢„测的准确率:

       é€šè¿‡ä¸€å®šçš„过程,可以提高预测的准确率(在文献2中有详细介绍):

       a.转换数据为libsvm可用形式.(可以通过下载的数据了解格式)

       b.进行一个简单的尺度变换

       c.利用RBF kernel,利用cross-validation来查找最佳的参数 C 和 r

       d.利用最佳参数C 和 r ,来训练整个数据集

       e.测试

       å†çœ‹ä¾‹å­1:

       1.进入cmd模式下,输入如下代码,将现有数据进行适度变换,生成变换后的数据文件train.1.scale.txt

       å‚数说明:

       -l 变换后的下限

       -u 变换后的上限

       -s 参考上文

       2执行以下代码

       import os

       os.chdir('C:\libsvm-3.\windows')#设定路径

       from svmutil import

*

       y, x = svm_read_problem('train.1.scale.txt')#读入训练数据

       yt, xt = svm_read_problem('test.1.scale.txt')#训练测试数据

       m = svm_train(y, x )#训练

       svm_predict(yt,xt,m)#测试

       ç²¾ç¡®åº¦ä¸ºAccuracy = .6% (/) (classification)。

       å¯è§æˆ‘们只是做了简单的尺度变换后,预测的正确率大大提升了。

       3通过选择最优参数,再次提高预测的准确率:(需要把tools文件下的grid.py拷贝到'C:\libsvm-3.\windows'下)

       import os

       os.chdir('C:\libsvm-3.\windows')#设定路径

       from svmutil import

*

       from grid import

*

       rate, param = find_parameters('train.1.scale.txt', '-log2c -3,3,1 -log2g -3,3,1')

       y, x = svm_read_problem('train.1.scale.txt')#读入训练数据

       yt, xt = svm_read_problem('test.1.scale.txt')#训练测试数据

       m = svm_train(y, x ,'-c 2 -g 4')#训练

       p_label,p_acc,p_vals=svm_predict(yt,xt,m)#测试

       æ‰§è¡Œä¸Šé¢çš„程序,find_parmaters函数,可以找到对应训练数据较好的参数。后面的log2c,log2g分别设置C和r的搜索范围。搜索机制是以2为底指数搜索,如 –log2c –3 , 3,1 就是参数C,从2^-3,2^-2,2^-1…搜索到2^3.

       æœç´¢åˆ°è¾ƒå¥½å‚数后,在训练的时候加上参数的设置。

       å¦å¤–,读者可以自己试试数据集2,3.

本文地址:http://hld.net.cn/html/27d572394249.html

copyright © 2016 powered by 皮皮网   sitemap