皮皮网
皮皮网

【cdn加速源码】【鲸落iapp源码】【搜索内容网站源码】linux 驱动源码_linux驱动源码分析

来源:歪歪蹲点源码 发表时间:2024-11-30 12:48:35

1.linux设备驱动程序——i2c设备驱动源码实现
2.Linux USB 驱动开发实例(一)——USB摄像头驱动实现源码分析
3.Linux驱动(驱动程序开发、驱驱动驱动框架代码编译和测试)
4.Linux驱动开发笔记(一):helloworld驱动源码编写、动源makefile编写以及驱动编译基本流程
5.Linux驱动开发笔记(二):ubuntu系统从源码编译安装gcc7.3.0编译器
6.linux源码解读(三十二):dpdk原理概述(一)

linux  驱动源码_linux驱动源码分析

linux设备驱动程序——i2c设备驱动源码实现

       深入了解Linux内核中的源码i2c设备驱动程序详解

       在Linux内核中,i2c设备驱动程序的分析实现是一个关键部分。本文将逐步剖析其形成、驱驱动匹配及源码实现,动源cdn加速源码以帮助理解i2c总线的源码工作原理。

       首先,分析熟悉I2C的驱驱动基本知识是必不可少的。作为主从结构,动源设备通过从机地址寻址,源码其工作流程涉及主器件对从机的分析通信。了解了基础后,驱驱动我们接着来看Linux内核中的动源驱动程序框架。

       Linux的源码i2c设备驱动程序框架由driver和device两部分构成。当driver和device加载到内存时,会自动调用match函数进行匹配,成功后执行probe()函数。driver中,probe()负责创建设备节点并实现特定功能;device则设置设备的I2C地址和选择适配器,如硬件I2C控制器。

       示例代码中,i2c_bus_driver.c展示了driver部分的实现,而i2c_bus_device.ko和i2c_bus_device.ko的编译加载则验证了这一过程。加载device后,probe函数会被调用,确认设备注册成功。用户程序可测试驱动,通过读写传感器寄存器进行操作。

       在设备创建方面,i2c_new_device接口允许在设备存在时加载驱动,但有时需要检测设备插入状态。这时,i2c_new_probed_device提供了检测功能,确保只有实际存在的设备才会被加载,有效管理资源。

       深入源码分析,i2c_new_probed_device主要通过检测来实现设备存在性,最终调用i2c_new_device,但地址分配机制确保了board info中的鲸落iapp源码地址与实际设备地址相符。

       至此,关于Linux内核i2c驱动的讨论结束。希望这个深入解析对您理解i2c设备驱动有帮助。如果你对此话题有兴趣,可以加入作者牧野星辰的Linux内核技术交流群,获取更多学习资源。

       学习资源

       Linux内核技术交流群:获取内核学习资料包,包括视频教程、电子书和实战项目代码

       内核资料直通车:Linux内核源码技术学习路线+视频教程代码资料

       学习直达:Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈

Linux USB 驱动开发实例(一)——USB摄像头驱动实现源码分析

       Linux下的USB摄像头驱动实现源码分析,主要通过四个部分完成:设备模块的初始化与卸载、上层软件接口模块、数据传输模块以及USB CORE的支持。

       一、初始化设备模块

       模块初始化和卸载通过调用`module_init`和`module_exit`函数实现,关键数据结构为USB驱动结构,支持即插即用功能,通过`spca5xx_probe`和`spca5xx_disconnect`函数。

       二、上层软件接口模块

       基于V4L协议规范,通过`file_operations`数据结构实现设备关键系统调用,功能包括:Open打开初始化、Close关闭、Read读取数据、Mmap内存映射、Ioctl获取文件信息等。Open功能初始化解码器模块,Read功能主要将数据从内核空间传至进程用户空间。

       三、数据传输模块

       采用tasklet实现同步快速数据传递,通过软件解码模块在`spcadecode.c`上解压缩图形数据流,如yyuyv、yuvy、jpeg、jpeg至RGB格式。解码算法依赖于硬件压缩算法,最终需DSP芯片实现。

       四、USB CORE的支持

       使用系统实现的USB CORE层提供函数接口,如`usb_control_msg`、搜索内容网站源码`usb_sndctrlpipe`等,实现对USB端点寄存器的读写操作。

       总结,本Linux USB摄像头驱动源码分析覆盖了驱动的初始化、上层接口实现、数据传输及USB CORE支持,涉及C/C++、Linux、Nginx等技术点。学习资料包括视频教程、技术路线图、文档等,通过私信获取。课程包含C/C++、Linux、Nginx等后端服务器架构开发技术,为学习者提供全面指导。

Linux驱动(驱动程序开发、驱动框架代码编译和测试)

       驱动就是对底层硬件设备的操作进行封装,并向上层提供函数接口。

       Linux系统将设备分为3类:字符设备、块设备、网络设备。

       先看一张图,图中描述了流程,有助了解驱动。

       用户态:

       内核态:

       驱动链表:管理所有设备的驱动,添加或查找, 添加是发生在我们编写完驱动程序,加载到内核。查找是在调用驱动程序,由应用层用户空间去查找使用open函数。驱动插入链表的顺序由设备号检索。

       字符设备驱动工作原理:

       在Linux的世界里一切皆文件,所有的硬件设备操作到应用层都会被抽象成文件的操作。当应用层要访问硬件设备,它必定要调用到硬件对应的驱动程序。Linux内核有那么多驱动程序,应用怎么才能精确的文秘网源码调用到底层的驱动程序呢?

       当open函数打开设备文件时,可以根据设备文件对应的struct inode结构体描述的信息,可以知道接下来要操作的设备类型(字符设备还是块设备),还会分配一个struct file结构体。

       根据struct inode结构体里面记录的设备号,可以找到对应的驱动程序。在Linux操作系统中每个字符设备都有一个struct cdev结构体。此结构体描述了字符设备所有信息,其中最重要的一项就是字符设备的操作函数接口。

       找到struct cdev结构体后,linux内核就会将struct cdev结构体所在的内存空间首地址记录在struct inode结构体i_cdev成员中,将struct cdev结构体中的记录的函数操作接口地址记录在struct file结构体的f_ops成员中。

       任务完成,VFS层会给应用返回一个文件描述符(fd)。这个fd是和struct file结构体对应的。接下来上层应用程序就可以通过fd找到struct file,然后在struct file找到操作字符设备的函数接口file_operation了。

       其中,cdev_init和cdev_add在驱动程序的入口函数中就已经被调用,分别完成字符设备与file_operation函数操作接口的绑定,和将字符驱动注册到内核的工作。

       驱动程序开发步骤:

       Linux 内核就是由各种驱动组成的,内核源码中有大约 %是各种驱动程序的代码。内核中驱动程序种类齐全,可以在同类驱动的基础上进行修改以符合具体单板。

       编写驱动程序的难点并不是硬件的具体操作,而是弄清楚现有驱动程序的框架,在这个框架中加入这个硬件。

       一般来说,编写一个 linux 设备驱动程序的大致流程如下:

       下面以一个简单的字符设备驱动框架代码来进行驱动程序的开发、编译等。

       基于驱动框架的代码开发:

       上层调用代码

       驱动框架代码

       驱动开发的重点难点在于读懂框架代码,在里面进行设备的添加和修改。

       驱动框架设计流程:

       1. 确定主设备号

       2. 定义结构体 类型 file_operations

       3. 实现对应的 drv_open/drv_read/drv_write 等函数,填入 file_operations 结构体

       4. 实现驱动入口:安装驱动程序时,就会去调用这个入口函数,执行工作:

       ① 把 file_operations 结构体告诉内核:注册驱动程序register_chrdev.

       ② 创建类class_create.

       ③ 创建设备device_create.

       5. 实现出口:卸载驱动程序时,就会去调用这个出口函数,执行工作:

       ① 把 file_operations 结构体从内核注销:unregister_chrdev.

       ② 销毁类class_create.

       ③ 销毁设备结点device_destroy.

       6. 其他完善:GPL协议、入口加载

       驱动模块代码编译和测试:

       编译阶段:

       驱动模块代码编译(模块的小商城php源码编译需要配置过的内核源码,编译、连接后生成的内核模块后缀为.ko,编译过程首先会到内核源码目录下,读取顶层的Makefile文件,然后再返回模块源码所在目录。)

       将该驱动代码拷贝到 linux-rpi-4..y/drivers/char 目录下 文件中(也可选择设备目录下其它文件)

       修改该文件夹下Makefile(驱动代码放到哪个目录,就修改该目录下的Makefile),将上面的代码编译生成模块,文件内容如下图所示:(-y表示编译进内核,-m表示生成驱动模块,CONFIG_表示是根据config生成的),所以只需要将obj-m += pin4drive.o添加到Makefile中即可。

       回到linux-rpi-4..y/编译驱动文件

       使用指令:ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- KERNEL=kernel7 make modules进行编译生成驱动模块。

       加载内核驱动:

       加载内核驱动(相当于通过insmod调用了module_init这个宏,然后将整个结构体加载到驱动链表中)。 加载完成后就可以在dev下面看到名字为pin4的设备驱动(这个和驱动代码里面static char *module_name="pin4"; //模块名这行代码有关),设备号也和代码里面相关。

       lsmod查看系统的驱动模块,执行上层代码,赋予权限

       查看内核打印的信息,如下图所示:表示驱动调用成功

       在装完驱动后可以使用指令:sudo rmmod +驱动名(不需要写ko)将驱动卸载。

       驱动调用流程:

       上层空间的open去查找dev下的驱动(文件名),文件名背后包含了驱动的主设备号和次设备号。此时用户open触发一个系统调用,系统调用经过vfs(虚拟文件系统),vfs根据文件名背后的设备号去调用sys_open去判断,找到内核中驱动链表的驱动位置,再去调用驱动里面自己的dev_open函数。

       为什么生成驱动模块需要在虚拟机上生成?树莓派不行吗?

       生成驱动模块需要编译环境(linux源码并且编译,需要下载和系统版本相同的Linux内核源代码)。也可以在树莓派上面编译,但在树莓派里编译,效率会很低,要非常久。

Linux驱动开发笔记(一):helloworld驱动源码编写、makefile编写以及驱动编译基本流程

       前言

       基于linux的驱动开发学习笔记,本篇主要介绍了一个字符驱动的基础开发流程,适合有嵌入式开发经验的读者学习驱动开发。

       笔者自身情况

       我具备硬件基础、单片机软硬基础和linux系统基础等,但缺乏linux驱动框架基础,也未进行过linux系统移植和驱动移植开发。因此,学习linux系统移植和驱动开发将有助于打通嵌入式整套流程。虽然作为技术leader不一定要亲自动手,但对产品构架中的每一块业务和技术要有基本了解。

       推荐

       建议参考xun为的视频教程,教程过程清晰,适合拥有丰富知识基础的资深研发人员学习。该教程不陷入固有思维误区,也不需要理解imx6的庞杂汇报,直接以实现目标为目的,无需从裸机开始开发学习,所有步骤都解释得清清楚楚。结合多年相关从业经验,确实能够融会贯通。从业多年,首次推荐,因为确实非常好。

       驱动

       驱动分为四个部分

       第一个驱动源码:Hello world!

       步骤一:包含头文件

       包含宏定义的头文件init.h,包括初始化和宏头文件,如module_init、module_exit等。

       #include

       包含初始化加载模块的头文件

       步骤二:写驱动文件的入口和出口

       使用module_init()和module_exit()宏定义入口和出口。

       module_init(); module_exit();

       步骤三:声明开源信息

       告诉内核,本模块驱动有开源许可证。

       MODULE_LICENSE("GPL");

       步骤四:实现基础功能

       入口函数

       static int hello_init(void) { printk("Hello, I’m hongPangZi\n"); return 0; }

       出口函数

       static void hello_exit(void) { printk("bye-bye!!!\n"); }

       此时可以修改步骤二的入口出口宏

       module_init(hello_init); module_exit(hello_exit);

       总结,按照四步法,搭建了基础的驱动代码框架。

       Linux驱动编译成模块

       将驱动编译成模块,然后加载到内核中。将驱动直接编译到内核中,运行内核则会直接加载驱动。

       步骤一:编写makefile

       1 生成中间文件的名称

       obj-m += helloworld.o

       2 内核的路径

       内核在哪,实际路径在哪

       KDIR:=

       3 当前路径

       PWD?=$(shell pwd)

       4 总的编译命令

       all: make -C $(KDIR) M=$(PWD) modules

       make进入KDIR路径,当前路径编译成模块。

       obj-m = helloworld.o KDIR:= PWD?=$(shell pwd) all: make -C $(KDIR) M=$(PWD) modules

       步骤二:编译驱动

       编译驱动之前需要注意以下几点:

       1 内核源码要编译通过

       驱动编译成的目标系统需要与内核源码对应,且内核源码需要编译通过。

       2 内核源码版本

       开发板或系统运行的内核版本需要与编译内核驱动的内核源码版本一致。

       3 编译目标环境

       在内核目录下,确认是否为需要的构架:

       make menu configure export ARCH=arm

       修改构架后,使用menu configure查看标题栏的内核构架。

       4 编译器版本

       找到使用的arm编译器(实际为arm-linux-gnueabihf-gcc,取gcc前缀):

       export CROSS_COMPILE=arm-linux-gnueabihf-

       5 编译

       直接输入make,编译驱动,会生成hellowold.ko文件,ko文件就是编译好的驱动模块。

       步骤三:加载卸载驱动

       1 加载驱动

       将驱动拷贝到开发板或目标系统,然后使用加载指令:

       insmod helloworld.ko

       会打印入口加载的printk输出。

       2 查看当前加载的驱动

       lsmod

       可以查看到加载的驱动模块。

       3 卸载驱动

       rmmod helloworld

       可以移除指定驱动模块(PS:卸载驱动不需要.ko后缀),卸载成功会打印之前的printk输出。

       总结

       学习了驱动的基础框架,为了方便测试,下一篇将使用ubuntu.编译驱动,并做好本篇文章的相关实战测试。

Linux驱动开发笔记(二):ubuntu系统从源码编译安装gcc7.3.0编译器

       在编译Ubuntu驱动时,由于使用的gcc版本为7.3.0,通过apt管理和下载都无法直接安装,因此需要从源码编译安装gcc7.3.0编译器。

       GCC,作为GNU项目的重要组成部分,是一款遵循GPL许可证的自由软件。起初,它为GNU操作系统设计,如今已广泛应用于Linux、BSD、MacOS X等系统,甚至在Windows上也有应用。GCC支持多种处理器架构,如x、ARM和MIPS,并且支持多种编程语言,如C、C++、Fortran、Pascal等。

       要从源码安装gcc7.3.0,首先需要下载源码包。下载地址为:mirrors.tuna.tsinghua.edu.cn...

       安装过程分为几个步骤。首先,确保网络连接,因为需要依赖库,如libgmp-dev、libmpfr-dev和libmpc-dev。安装完这些后,不要卸载已有的gcc,因为可能会遇到问题。

       下载并解压gcc-7.3.0.tar.gz,然后执行./configure。注意增加c和c++的配置,避免编译结果只有g++。配置完成后,进行make -j4编译,可能会遇到错误,如"fatal error: asm/errno.h: No such file or directory",这时需要修改头文件路径。

       继续编译,可能会遇到"sanitizer_syscall_generic.inc::: error: '__NR_open' was not declared in this scope",解决方法是修正头文件链接。最后,编译成功后执行sudo make install,并确认安装版本。

       在安装过程中,有两点需要注意:一是本地需要g++,否则编译时会出错,解决方法是安装gcc;二是安装后可能只有g++,没有gcc,此时需在./configure阶段添加c和c++的配置。

linux源码解读(三十二):dpdk原理概述(一)

       Linux源码解析(三十二):深入理解DPDK原理(一)

       几十年来,随着技术的发展,传统操作系统和网络架构在处理某些业务需求时已显得力不从心。为降低修改底层操作系统的高昂成本,人们开始在应用层寻求解决方案,如协程和QUIC等。然而,一个主要问题在于基于内核的网络数据IO,其繁琐的处理流程引发了效率低下和性能损耗。

       传统网络开发中,数据收发依赖于内核的receive和send函数,经过一系列步骤:网卡接收数据、硬件中断通知、数据复制到内存、内核线程处理、协议栈层层剥开,最终传递给应用层。这种长链式处理方式带来了一系列问题,如上下文切换和协议栈开销。

       为打破这种限制,Linux引入了UIO(用户空间接口设备)机制,允许用户空间直接控制网卡,跳过内核协议栈,从而大大简化了数据处理流程。UIO设备提供文件接口,通过mmap映射内存,允许用户直接操作设备数据,实现绕过内核控制网络I/O的设想。

       DPDK(Data Plane Development Kit)正是利用了UIO的优点,如Huge Page大页技术减少TLB miss,内存池优化内存管理,Ring无锁环设计提高并发性能,以及PMD poll-mode驱动避免中断带来的开销。它采用轮询而非中断处理模式,实现零拷贝、低系统调用、减少上下文切换等优势。

       DPDK还注重内存分配和CPU亲和性,通过NUMA内存优化减少跨节点访问,提高性能,并利用CPU亲和性避免缓存失效,提升执行效率。学习DPDK,可以深入理解高性能网络编程和虚拟化领域的技术,更多资源可通过相关学习群获取。

       深入了解DPDK原理,可以从一系列资源开始,如腾讯云博客、CSDN博客、B站视频和LWN文章,以及Chowdera的DPDK示例和腾讯云的DPDK内存池讲解。

       源:cnblogs.com/thesevenths...

Linux驱动编程——chx驱动移植

       chx驱动移植主要概念

       移植指的是将厂商提供的驱动源码调整适配到特定的系统版本。Linux系统通常会提供这些驱动的源代码。

       ch简介

       这是一种用于USB转串口的芯片,需要编写驱动程序。

       实验目的

       在Linux平台上熟悉驱动移植、编译和加载的方法,实现官方chx驱动的USB转串口功能。

       硬件电路

       开发板和一个CH模块。

       驱动源码下载

       从blog.csdn.net/JAZZSOLDI...下载Linux驱动CHSER_LINUX.ZIP,包含chx.c(驱动源码)、Makefile(编译文件)和readme.txt(版本和命令说明)。

       代码修改

       主要修改chx.c的两处代码,注释某些代码,同时自定义Makefile。

       编译运行

       使用make命令编译,生成chx.ko的目标文件。使用make install将目标文件拷贝到NFS目录。插入CH模块后,使用insmod命令加载chx驱动。

       实验现象

       加载驱动后,系统立即识别出新的串口,证明移植成功。

       总结

       完成驱动的移植后,验证了USB转串口功能的实现,验证了驱动在特定系统环境下的兼容性与可用性。

相关栏目:探索

.重点关注