皮皮网

【pudn的源码】【android 源码下载 windows】【群控系统 源码】recvfrom源码

2024-11-23 08:45:48 来源:网站主题源码

1.使用原始套接字发送_接收IEEE1905协议帧
2.几个代码伪装成高级黑客
3.Linux网络编程中网络传输KCP协议原理解析

recvfrom源码

使用原始套接字发送_接收IEEE1905协议帧

       IEEE简介

       IEEE Std .1为多个家庭网络提供了一个抽象层,源码包括电力线、源码Wi-Fi、源码双绞线以太网。源码它在MAC层和LLC层间提供了一个共通接口,源码支持数据包传输的源码pudn的源码连通性选择,不需改变底层网络技术的源码行为或实现。

       简单而言,源码IEEE在数据链路层增加了一个抽象层,源码允许应用直接获取IEEE信息。源码

       如何发送一个IEEE数据帧

       由于IEEE位于数据链路层,源码无法通过数据链路层以上的源码socket获取信息。需创建raw socket并指定以太网数据类型0xa,源码发送IEEE类型包。源码将值更改为0x可发送任意类型帧。源码

       构建以太网头、cmdu头及TLVs。本文仅构造topology query消息,故仅构建endOfMessageTlv。将数据按照以太网头+cmdu头+TLVs顺序拷贝到buf中,android 源码下载 windows准备发送。

       使用memcpy函数完成数据拷贝。

       发送原始数据包并编译wireshark抓包。

       编译后运行程序需root权限。运行前可打开wireshark,使用eth.type == 0xa过滤IEEE包进行验证。

       源码如何接收一个IEEE数据帧

       接收需创建raw socket,与发送一致。可选择绑定接口,若填充接收函数参数,则无需绑定。

       使用recvfrom()函数接收数据。

       接收后,十六进制打印buf内容,与wireshark抓取数据对比验证。

       源码拓展获取所有网络接口

       调用if_nameindex()获取接口链表,使用if_nameinde释放内存。

       获取接口对应MAC地址

       通过sockfd+ioctl获取MAC地址,需提前填充网络接口名称。群控系统 源码 ioctl后,结构体携带MAC地址值。

       参考链接

几个代码伪装成高级黑客

       1. Introduction

       作为计算机科学领域中最为著名的职业之一,黑客在当前的网络时代中有着不可忽视的作用。高级黑客更是其中的佼佼者,他们不仅具备了深厚的计算机技术知识,更能够使用各种技术手段,无中生有、突破困境、扰乱秩序等,令人望尘莫及。本文将会介绍一些简单的代码,让大家了解如何通过伪装成高级黑客,获得与众不同、且备受他人崇拜的感受。

       2. 建立IP连接

       在Python中,我们可以使用socket库来建立一个IP连接,并实现从目标服务器上获取数据的操作,下面是教育网站 源码一段伪装成高级黑客的代码:

       ```python

       import socket

       def conn(IP, Port):

        client = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

        client.connect((IP,Port))

        while True:

        data = client.recv()

        print (\'receive:\', data.decode()) #将获取到的数据进行解码

        client.send(\'ACK!\'.encode()) #发送一个确认信息

       if __name__ == \'__main__\':

        conn(\'.0.0.1\', )

       ```

       通过以上代码,我们可以连接到指定的服务器和对应的端口,获取到服务器发送的数据,并且能够对服务器返回一份确认信息,同时也向别人表现出伪装成高级黑客,游刃有余的状态。

       3. 文件域修改

       文件域修改是黑客行业中非常重要的一环,它可以改变一个可编辑文件中特定寻址位置的值。这个方法可以被用来对各种各样的文件(如二进制文件)进行操控。下列的Python代码可以让你的伪装更加漂亮:

       ```python

       import struct

       import os

       def change_value(file_path, offset, value):

        with open(file_path, \"r+b\") as f:

        f.seek(offset)

        f.write(struct.pack(\'i\', value))

       if __name__ == \"__main__\":

        file_path = \"/etc/hosts\"

        offset =

        value =

        change_value(file_path, offset, value)

       ```

       以上代码用到了struct结构体和os模块,使用`r+`文件模式打开指定的文件,通过file.seek()方法改变寻址位置,最后使用`struct.pack()`方法打包整数,并使用write()方法写入文件中。当写入完成后,文件中的值也随之更改。这时,你已成为了一个擅长黑客技术的“高手”。

       4. 网络嗅探

       网络嗅探是指在一个网络中抓取和记录经过网络的信息,并对这些信息进行分析。android源码下载 windows在现代网络安全领域中,网络嗅探被广泛地应用于网络审计和攻击检测。下面是一个伪装成高级黑客的Python代码示例,可以用于嗅探TCP流量包:

       ```python

       import socket

       def sniffTCP(port):

        try:

        sock = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_TCP)

        sock.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1)

        sock.bind((\'.0.0.1\', port))

        while True:

        packet = sock.recvfrom()[0]

        ip_header = packet[0:]

        tcp_header = packet[:]

        print(\"TCP Source Port: %d\" % ord(tcp_header[0]))

        except KeyboardInterrupt:

        print(\'Interrupted.\')

       if __name__ == \"__main__\":

        sniffTCP()

       ```

       上述程序使用Python的socket库来监听指定的端口,收集包含TCP流量的数据报,并在控制台输出源端口号。此时,你已经成为一个懂得TCP嗅探技术的黑客了。

       5. 爬取网页信息

       网络爬虫被广泛用于百度和谷歌搜索引擎中,通过分析网页的源代码,检查网站的链接,实现数据抓取和分析。下面是一个伪装成高级黑客的Python代码示例,可以用于网页爬取,我们可以把以前熟悉的requests库和xpath技术结合运用。

       ```python

       import requests

       from lxml import html

       def get_info(url):

        page = requests.get(url)

        tree = html.fromstring(page.content)

        title = tree.xpath(\'//title\')[0].text_content()

        print(\'Website Title:\', title)

        links = tree.xpath(\'//a/@href\')

        print(\'Links:\')

        for link in links:

        print(link)

       if __name__ == \'__main__\':

        get_info(\'\')

       ```

       这些代码使用了requests和lxml库,获取页面内容并解析HTML,以提取指定节点的数据,如标题和链接。此时,在码量不大的情况下,你已成为一个懂得网页爬取技术的黑客了。

       结论

       以上提供的伪装成高级黑客的五个应用程序演示了Python的实用性和可扩展性。通过这些例子,我们可以使自己更好的了解Python,更好地思考如何在网络和数据安全方面实现自己所需的操作。同时,我们也可以通过这些代码,感受到黑客的精神和技术的魅力,找寻到自己更好的成长和发展机会。

Linux网络编程中网络传输KCP协议原理解析

       在Linux网络编程的世界里,KCP协议犹如一把锐利的匕首,专为追求游戏实时性的开发者精心打造。它放弃了TCP的繁琐友好,以换取更高的数据传输效率,基础架构源于UDP的轻盈。KCP的核心理念是“自私”,它聚焦于每一包数据的传输,而非全局网络状况的考量,这在它的头部字段中可见一斑:连接号、命令字、分片信息、接收窗口大小、时间戳、序列号和确认号等,每一项都精心设计,为高效传输保驾护航。

       KCP的通信流程犹如精密的机器,数据接收与发送的过程井然有序。接收时,数据会被有序地存入rcv_buf,而发送则会对数据进行智能分片,同时运用流量控制和拥塞控制策略,底层操作则依赖于recvfrom()和sendto()这两个功能强大的函数。

       对于初学者,我们推荐从C/C++实现TCP/IP协议栈、腾讯面试题和服务器架构师学习资料等资源开始,逐步掌握KCP的实践应用。理解KCP的关键在于数据接收的管理、发送的策略,以及如何巧妙地运用底层网络函数。

       KCP的确认机制独特而灵活,snd_buf中存储着待发送和未确认的数据包,它结合了una(类似TCP的ack)和单独ack,优先检测una,确保数据的准确传递。其重传策略设计巧妙,如自定义超时时间、快速重传和延迟ack,以及非退让流控,这一切都为了在效率与可靠性之间找到最佳平衡。

       KCP的实现原理深藏奥秘,作为应用层协议,它通过接收窗口管理实现选择性重传,巧妙地处理网络拥塞。源码分析深入浅出,从初始化KCP对象到数据包的发送逻辑,每个细节都体现着稳定通信的匠心独运。

       ikcp_send函数是发送逻辑的主角,它根据数据包的分片计数创建segment,并通过双向链表操作实现发送。在数据分片发送过程中,它会先发送ACK,再根据窗口探测和探测时间进行数据传输,确保每个环节都精确无误。

       队列与缓冲管理是KCP高效运行的关键,特别是nodelay模式下的快速响应。ikcp_flush和ikcp_input函数分别负责更新时间戳和处理接收数据,从ACK到数据包的解析,每一处都体现着KCP的高效性和准确性。

       KCP之所以能在丢包网络环境中大放异彩,得益于其无系统调用接口、无需繁琐的连接建立与断开,以及灵活的参数配置。然而,这背后的学习成本和部分运营商对UDP的限制也不容忽视。

       总结来说,KCP是TCP的精简版,它在实时传输和重传效率上进行了深度优化,尤其适用于对延迟敏感的游戏应用,如《英雄联盟》。尽管有其局限性,但其在特定场景下的表现无疑是令人称赞的。