1.PostgreSQL · 源码分析 · 回放分析(一)
2.FlinkCDC数据实时同步Mysql到ES
3.flink-cdc同步mysql数据到kafka
4.Flink mysql-cdc connector 源码解析
5.利用Kettle进行数据同步(下)
PostgreSQL · 源码分析 · 回放分析(一)
在数据库运行中,数据可能遇到非预期问题,库同如断电、步源崩溃。码数这些情况可能导致数据异常或丢失,据库影响业务。同步英文手机商城源码为了在数据库重启时恢复到崩溃前状态,源码用确保数据一致性和完整性,数据我们引入了WAL(Write-Ahead Logging)机制。库同WAL记录数据库事务执行过程,步源当数据库崩溃时,码数利用这些记录恢复至崩溃前状态。据库
WAL通过REDO和UNDO日志实现崩溃恢复。同步REDO允许对数据进行修改,源码用UNDO则撤销修改。数据REDO/UNDO日志结合了这两种功能。除了WAL,还有Shadow Pagging、WBL等技术,但WAL是主要方法。
数据库内部,日志管理器记录事务操作,缓冲区管理器负责数据存储。当崩溃发生,恢复管理器读取事务状态,回放已提交数据,梦幻西游注册源码回滚中断事务,恢复数据库一致性。ARIES算法是日志记录和恢复处理的重要方法。
长时间运行后崩溃,可能需要数小时甚至数天进行恢复。检查点技术在此帮助,将脏数据刷入磁盘,记录检查点位置,确保恢复从相对较新状态开始,同时清理旧日志文件。WAL不仅用于崩溃恢复,还支持复制、主备同步、时间点还原等功能。
在记录日志时,WAL只在缓冲区中记录,直到事务提交时等待磁盘写入。LSN(日志序列号)用于管理,只在共享缓冲区中检查。XLog是事务日志,WAL是持久化日志。
崩溃恢复中,checkpointer持续做检查点,加快数据页面更新,提高重启恢复速度。人人彩票源码在回放时,数据页面不断向前更新,直至达到特定LSN。
了解WAL格式和包含信息有助于理解日志内容。PG社区正在实现Zheap特性,改进日志格式。WAL文件存储在pg_wal目录下,大小为1GB,与时间线和LSN紧密关联。事务日志与WAL段文件相关联,根据特定LSN可识别文件名和位置。
使用pg_waldump工具可以查看日志内容,理解一次操作记录。日志类型包括Standby、Heap、Transaction等,对应不同资源管理器。PostgreSQL 包含种资源管理器类型,涉及堆元组、索引、序列号操作。
标准记录流程包括:读取数据页面到frame、记录WAL、进行事务提交。插入数据流程生成WAL,看水软件源码复杂修改如索引分裂需要记录多个WAL。
崩溃恢复流程从控制文件中获取检查点位置,严格串行回放至崩溃前状态。redo回放流程与记录代码高度一致。在部分写问题上,FullPageWrite(FPW)策略记录完整数据页面,防止损坏。WAL错误导致部分丢失不影响恢复,数据库会告知失败。磁盘静默错误和内存错误需通过冗余校验解决。
本文总结了数据库崩溃恢复原理,以及PostgreSQL日志记录和崩溃恢复实现。深入理解原理可提高数据库管理效率。下文将详细描述热备恢复和按时间点还原(PITR)方法。
FlinkCDC数据实时同步Mysql到ES
当需要将数据库数据实时同步到其他系统,如Elasticsearch,一个高效的方法是利用Apache Flink的CDC(Change Data Capture)技术。Flink CDC通过监控数据库日志,捕获数据的增删改操作,并实时将这些变化数据传输到目标系统,满足高实时性的需求。Flink CDC凭借Flink的强大实时处理能力,支持集群部署和高可用性,且与MySQL、Oracle、微星修复版源码MongoDB等主流数据库兼容,其Java实现为开发者提供了灵活的开发环境和源码可定制性。 例如,通过Flink SQL,仅需寥寥几行代码就能实现MySQL数据到Elasticsearch的实时同步。首先,确保安装了相关的Flink和SQL插件,如flink-1..0和flink-sql-connector-组件。启动Flink后,通过窗口功能创建与MySQL的连接表,以及与Elasticsearch同步的表。接着编写SQL任务,任务运行后,MySQL的数据即可实时流入Elasticsearch。此外,Flink CDC还支持其他数据源,如Oracle、MongoDB等,可以灵活地通过Kafka等中间件进行进一步处理和分发。 想了解更多关于Flink CDC的细节和使用方法,可以参考以下链接:Flink CDC官网
Flink CDC GitHub仓库
Flink官方文档
通过以上Flink CDC的介绍,实时同步MySQL到Elasticsearch的任务变得简单而强大。
flink-cdc同步mysql数据到kafka
Flink CDC技术是用于实时捕获数据库变更数据的关键工具,它记录数据表的插入、更新和删除操作,然后将这些变化以有序的方式推送到消息中间件,以支持其他服务订阅和处理。以下是如何将MySQL数据同步到Kafka的步骤。环境准备
如果没有安装Hadoop,可以选择使用Flink standalone模式。依赖包安装
从指定地址下载flink的依赖,特别是flink-sql-connector-mysql-cdc。初始版本为1.4,但后来发现1.3.0更适合,因为它与connector-kafka兼容性更好。对于更高版本的Flink,可以选择从github下载源码自行编译,但这里推荐使用1.3版本的jar包。启动Flink SQL Client
在YARN上启动Flink application,进入flink目录并执行相关命令,然后切换到Flink SQL命令行。同步数据
首先,创建一个MySQL表,并在Flink SQL中与之关联,这样操作此表就像操作MySQL表一样。接着,设置数据表与Kafka的关联,例如创建名为product_view_kafka_sink的主题,数据同步会自动触发。执行SQL同步任务后,可以在Flink web-ui中看到MySQL数据已被同步到Kafka,MySQL的插入操作将实时反映在Kafka中。 通过Kafka控制台验证数据同步,确认数据已从MySQL成功同步至Kafka。参考资源
进一步的信息可以参考ververica.github.io/fli...。Flink mysql-cdc connector 源码解析
Flink 1. 引入了 CDC功能,用于实时同步数据库变更。Flink CDC Connectors 提供了一组源连接器,支持从MySQL和PostgreSQL直接获取增量数据,如Debezium引擎通过日志抽取实现。以下是Flink CDC源码解析的关键部分:
首先,MySQLTableSourceFactory是实现的核心,它通过DynamicTableSourceFactory接口构建MySQLTableSource对象,获取数据库和表的信息。MySQLTableSource的getScanRuntimeProvider方法负责创建用于读取数据的运行实例,包括DeserializationSchema转换源记录为Flink的RowData类型,并处理update操作时的前后数据。
DebeziumSourceFunction是底层实现,继承了RichSourceFunction和checkpoint接口,确保了Exactly Once语义。open方法初始化单线程线程池以进行单线程读取,run方法中配置DebeziumEngine并监控任务状态。值得注意的是,目前只关注insert, update, delete操作,表结构变更暂不被捕捉。
为了深入了解Flink SQL如何处理列转行、与HiveCatalog的结合、JSON数据解析、DDL属性动态修改以及WindowAssigner源码,可以查阅文章。你的支持是我写作的动力,如果文章对你有帮助,请给予点赞和关注。
本文由文章同步助手协助完成。
利用Kettle进行数据同步(下)
上篇内容对基于kettle的数据同步工程的构建进行了介绍,entrypoint.kjb作为工程执行的入口。
为了减少操作成本,并确保数据同步过程稳定、安全,需要从更高层次进行抽象,创建一个简单易用的系统。
以下是应用截图:
除了选择数据源和数据库,还增加了授权码,意味着只有授权范围内的用户才能使用该系统。
由于是内部使用,授权用户尚未实现后台管理,直接在应用数据库中添加,选择的数据源和数据库都通过配置文件生成。
文末会提供GitHub上的源码地址,有需要的读者可以进行二次开发。
一、数据库设计
数据库名称为kettle,目前包含两张表:
1、授权用户表。表中记录的用户可以使用数据同步系统。
2、同步记录表。记录用户的数据同步操作。
二、程序设计
系统简单实用,没有特别的设计。以下是重点说明的三点:
1、数据源及其参数配置。
在application.yml配置文件中,存在如下配置:
使用了springboot的@ConfigurationProperties注解。
其中的DBSetting定义如下:
通过客户端传递的参数,可以定位到相应的参数设置。
2、集成kettle的API。
由于kettle相关jar包放在了自建的nexus私服上,因此如果使用maven管理jar包,需要在settings.xml配置文件中做一些修改:
其中的mirrorOf节点添加了!pentaho-releases,表示排除pentaho-releases。
然后,在springboot工程的pom.xml中指定pentaho-releases的url。
接下来是核心的对接代码,具体可以参考工程源码。
3、异步执行作业
由于Job的执行时间可能会很长,主要取决于数据量,因此一个request的来回可能会导致TIMEOUT,需要改为异步模式。
核心思想是:启动新的线程,客户端定时轮询执行结果。
三、总结
本文分两篇文章介绍了如何利用kettle进行数据同步,并实现一个简易的系统,以降低操作成本和出错率。
介绍到此,如有疑问,请留言。
欢迎fork我的工程代码。
2025-01-18 18:43
2025-01-18 18:23
2025-01-18 18:22
2025-01-18 18:16
2025-01-18 18:14
2025-01-18 17:45
2025-01-18 16:55
2025-01-18 16:31