1.上海浦东软件园郭守敬园有哪些公司
2.全面梳理:准确率,拍拍拍贷精确率,召回率,查准率,查全率,假阳性,真阳性,PRC,ROC,AUC,F1
上海浦东软件园郭守敬园有哪些公司
汉莎航测集团英塔信息技术公司
上海拍拍贷金融信息服务有限公司上海市浦东新区郭守敬路号8号楼1楼
美斯达医药开发公司 地址: 郭守敬路号1号楼
上海亚伦科技有限公司 地址: 郭守敬路号号楼5层
现代重工上海研发公司 地址: 郭守敬路号号楼
上海杰瑞信息科技公司 地址: 浦东软件园号楼
普华永道信息技术公司地址: 郭守敬路号号楼
全面梳理:准确率,精确率,召回率,查准率,查全率,假阳性,真阳性,PRC,ROC,AUC,F1
二分类问题的结果有四种:
逻辑在于,你的贷源代码预测是positive-1和negative-0,true和false描述你本次预测的码拍对错
true positive-TP:预测为1,预测正确即实际1
false positive-FP:预测为1,拍拍拍贷预测错误即实际0
true negative-TN:预测为0,贷源代码预测正确即实际0
false negative-FN:预测为0,码拍苹果uuid获取源码预测错误即实际1
混淆矩阵
直观呈现以上四种情况的拍拍拍贷样本数
准确率accuracy
正确分类的样本/总样本:(TP+TN)/(ALL)
在不平衡分类问题中难以准确度量:比如%的正样本只需全部预测为正即可获得%准确率
精确率查准率precision
TP/(TP+FP):在你预测为1的样本中实际为1的概率
查准率在检索系统中:检出的相关文献与检出的全部文献的百分比,衡量检索的贷源代码信噪比
召回率查全率recall
TP/(TP+FN):在实际为1的样本中你预测为1的概率
查全率在检索系统中:检出的相关文献与全部相关文献的百分比,衡量检索的码拍覆盖率
实际的二分类中,positive-1标签可以代表健康也可以代表生病,拍拍拍贷但一般作为positive-1的贷源代码指标指的是你更关注的样本表现,比如“是码拍垃圾邮件”“是阳性肿瘤”“将要发生地震”。
因此在肿瘤判断和地震预测等场景:
要求模型有更高的拍拍拍贷召回率recall,是贷源代码个地震你就都得给我揪出来不能放过
在垃圾邮件判断等场景:
要求模型有更高的精确率precision,你给我放进回收站里的码拍可都得确定是垃圾,千万不能有正常邮件啊
ROC
常被用来评价一个二值分类器的优劣
ROC曲线的横坐标为false positive rate(FPR):FP/(FP+TN)
假阳性率,即实际无病,但根据筛检被判为有病的百分比。
在实际为0的样本中你预测为1的概率
纵坐标为true positive rate(TPR):TP/(TP+FN)
真阳性率,即实际有病,但根据筛检被判为有病的漫画之家整站源码百分比。
在实际为1的样本中你预测为1的概率,此处即召回率查全率recall
接下来我们考虑ROC曲线图中的四个点和一条线。
第一个点,(0,1),即FPR=0,TPR=1,这意味着无病的没有被误判,有病的都全部检测到,这是一个完美的分类器,它将所有的样本都正确分类。
第二个点,时时彩源码dre(1,0),即FPR=1,TPR=0,类似地分析可以发现这是一个最糟糕的分类器,因为它成功避开了所有的正确答案。
第三个点,(0,0),即FPR=TPR=0,即FP(false positive)=TP(true positive)=0,没病的游戏单机源码没有被误判但有病的全都没被检测到,即全部选0
类似的,第四个点(1,1),分类器实际上预测所有的样本都为1。
经过以上的分析可得到:ROC曲线越接近左上角,该分类器的性能越好。
ROC是如何画出来的
分类器有概率输出,%常被作为阈值点,但基于不同的场景,可以通过控制概率输出的阈值来改变预测的标签,这样不同的网站源码查后门阈值会得到不同的FPR和TPR。
从0%-%之间选取任意细度的阈值分别获得FPR和TPR,对应在图中,得到的ROC曲线,阈值的细度控制了曲线的阶梯程度或平滑程度。
一个没有过拟合的二分类器的ROC应该是梯度均匀的,如图紫线
ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。而Precision-Recall曲线会变化剧烈,故ROC经常被使用。
AUC
AUC(Area Under Curve)被定义为ROC曲线下的面积,完全随机的二分类器的AUC为0.5,虽然在不同的阈值下有不同的FPR和TPR,但相对面积更大,更靠近左上角的曲线代表着一个更加稳健的二分类器。
同时针对每一个分类器的ROC曲线,又能找到一个最佳的概率切分点使得自己关注的指标达到最佳水平。
AUC的排序本质
大部分分类器的输出是概率输出,如果要计算准确率,需要先把概率转化成类别,就需要手动设置一个阈值,而这个超参数的确定会对优化指标的计算产生过于敏感的影响
AUC从Mann–Whitney U statistic的角度来解释:随机从标签为1和标签为0的样本集中分别随机选择两个样本,同时分类器会输出两样本为1的概率,那么我们认为分类器对“标签1样本的预测概率>对标签0样本的预测概率 ”的概率等价于AUC。
因而AUC反应的是分类器对样本的排序能力,这样也可以理解AUC对不平衡样本不敏感的原因了。
作为优化目标的各类指标
最常用的分类器优化及评价指标是AUC和logloss,最主要的原因是:不同于accuracy,precision等,这两个指标不需要将概率输出转化为类别,而是可以直接使用概率进行计算。
顺便贴上logloss的公式
F1
F1兼顾了分类模型的准确率和召回率,可以看作是模型准确率和召回率的调和平均数,最大值是1,最小值是0。
额外补充AUC为优化目标的模型融合手段rank_avg:
在拍拍贷风控比赛中,印象中一个前排队伍基于AUC的排序本质,使用rank_avg融合了最后的几个基础模型。
rank_avg这种融合方法适合排序评估指标,比如auc之类的
其中weight_i为该模型权重,权重为1表示平均融合
rank_i表示样本的升序排名 ,也就是越靠前的样本融合后也越靠前
能较快的利用排名融合多个模型之间的差异,而不用去加权样本的概率值融合
贴一段源码:
M为正类样本的数目,N为负类样本的数目,rank为分类器给出的排名。
可以发现整个计算过程中连直接的概率输出值都不需要,仅关心相对排名,所以只要保证submit的那一组输出的rank是有意义的即可,并不一定需要必须输出概率。