1.åç ï¼åç ï¼è¡¥ç ï¼ç§»ç
2.计算机中的源码原代码、补码、和进逆码怎么表示?
3.原码、源码反码、和进补码怎么转换为十进制数?
åç ï¼åç ï¼è¡¥ç ï¼ç§»ç
åå¨åé¢ï¼è¯¥æç« ä¸ºæ¬äººå¦ä¹ ä¸åçä¸äºç¬è®°åå¿å¾ï¼å表åºæ¥ä¸»è¦æ¯ä¸ºäºè®°å½èªå·±çå¦ä¹ è¿ç¨ãæ¬äººæçå¦æµ ï¼ç¬è®°é¾å åå¨ä¸è¶³çè³çº°æ¼ï¼ä½ä¼ä¸å®ææ´æ°ãåºæ¬ç¥è¯ï¼å设æä¸ä¸ªnä½çäºè¿å¶æ°
åè¿ä¸ªäºè¿å¶æ°å ±æ ç§ç¶æï¼è¿ä¸ªæ°æ大为
åè¿æ¥ ï¼åæäºè¿å¶ä¸º ï¼ä¸å ±æ8ä½ï¼1åé¢7个å°æ°
以ä¸ä¸¾ä¾å为nä½æ°ï¼å®ä¾ä¸º8ä½æ°
åç
ç®åç´æ¥çäºè¿å¶ï¼ä»¥ä¸ä»¥å®ç¹æ°ä¸ºä¾ã
å®ç¹çº¯å°æ°ï¼ 0 é¦ä½ä¸ºç¬¦å·ä½ï¼0为æ£1为è´ï¼è¿é表示0.1ï¼ï¼
å®ç¹çº¯æ´æ°ï¼ 0 è¿é表示1ï¼ï¼
å 为æ符å·ä½ï¼æ以ææ£è´é¶ä¹å 0 å 1
æ°æ®èå´ï¼-~ï¼åé¢7ä½å ¨ä¸º1ï¼//å ¬å¼è¡¨è¾¾ä¸º
ç¹ç¹ï¼åç ä¸éåå åï¼ä½éåä¹é¤
åç
æ£æ°çåç ä¸å ¶åç ç¸åï¼è´æ°çåç æ¯å¯¹å ¶ç¬¦å·ä½åçåç éä½ååï¼ç¬¦å·ä½ä¸åï¼ä¸º1ï¼
åç è½è¡¨è¾¾çæ°æ®èå´ï¼ä¸æºç ä¸æ ·
è¡¥ç
ç®çï¼æ¹ä¾¿è®¡ç®æºè¿è¡å å
ç¹ç¹ï¼å¨æºå¨ä¸éåå åçæ°å表示æ¹å¼
è¡¥ç è½å®ç°è®¡ç®æº"å ä¸è´æ°"çæ¬è´¨åçæ¯æ¨¡è¿ç®ï¼ä¹å°±æ¯Aåå»BçäºAå ä¸Bç¸å¯¹äºAçè¡¥æ°åæ±æ¨¡ã就好åæ¶é顺æ¶éæ¨å¨3håéæ¶éæ¨å¨9hå¾å°çç»æä¸æ ·ã
äºè¿å¶æ±è¡¥ç ï¼
è¡¥æ°=ï¼åæ°+模ï¼ï¼mod 模ï¼ï¼å¾ææ¾ï¼è¥åç æ¯æ£ï¼åè¡¥ç æ¯å®æ¬èº«ï¼å¯¹äºæ£æ°å®å ¨ä¸ç¨èèæ±è¡¥ç ã
对äºè®¡ç®æºï¼å 为两个ç¸å çæ°çä½æ°ç¸åï¼nï¼ï¼ä¸åä¸è½è¶ è¿n+1ä½ï¼å æ¤åºè¯¥åç模æ¯...ï¼n个0ï¼ã
å æ¤å¯¹äºnä½çº¯å°æ°ï¼å®ç模ï¼åè¿å¶ï¼ä¸º2 ï¼å¯¹äºnä½çº¯æ´æ°ï¼å®ç模为2 n
模 ï¼ ï¼1 0 ï¼
åç ï¼ ï¼ 0 ï¼
注æå°ï¼å°½ç®¡ç¬¦å·ä½æ²¡æä»»ä½æ°å¼ä¿¡æ¯ï¼è¿éå模ä¾ç¶æ符å·ä½èèè¿å»äºï¼åå æ¯æ们å¯ä»¥éè¿å®ä¹è¡¥ç ï¼æ¥ä½¿ç¬¬ä¸ä¸ªç¬¦å·ä½åä¸è®¡ç®æºè®¡ç®ï¼ä»èå¾å°æ³è¦çç»æã
ï¼åæ¶ï¼æ符å·ä½ç®è¿å»å¯ä»¥è®©æ们å¨ç¨æ°å¦å ¬å¼æ³æ±äºè¿å¶è¡¥æ°æ¶ï¼ç´æ¥ä»ç»æå¾å°è¡¥ç
ä¾: x= -0.
[x]è¡¥=+x=.-0.=1.
åæ¥æ¯è¦å模å¾è¡¥æ°ä¸º0.ï¼2ï¼ï¼ä½æ£å¥½é¦ä½ç1å¯ä»¥è¡¨ç¤ºåæ°çè´å·ï¼å æ¤å¯ç´æ¥è¯»åºè¡¥ç 为1
ï¼
å æ¤å¯¹äºè¡¥ç ï¼ç¬¦å·ä½æ¢èµ·æ示æ£è´å·çä½ç¨ï¼ååä¸è¿ç®ã
å¦å¤ï¼åºå«äºåç æ两个0ï¼æ£è´0ï¼ï¼å¨è¡¥ç çè§å®ä¸ï¼åªæä¸ä¸ª0ï¼...çæ£0ï¼å 为åç ä¹å ¨æ¯0ï¼ï¼è1 ...å¯ä»¥è¡¨ç¤º-1ï¼è¡¥ç 纯å°æ°ï¼æ-2 n-1 (è¡¥ç 纯æ´æ°)
//å¯ä»¥è¿ä¹è®°ï¼ä»¥çº¯æ´æ°ä¸ºä¾ï¼ï¼å 为åé¢n-1个0ååå为n-1个1ï¼å 1å为2 n-1 ()ï¼åé¢ä¸ä¸ª1表示è´æ°ï¼å æ¤è¡¥ç è½è¡¨ç¤º-2 n-1
è¡¥ç æä¹æ¥ï¼åç 为æ£ï¼è¡¥ç ä¸åç ç¸åï¼åç 为è´ï¼åé¢çä½æ°ä¸ºåç ååå 1
移ç
ç®çï¼ä¸ºäºæ¹ä¾¿è®¡ç®æºæ¯å¤§å°ï¼æ¶é¤ç¬¦å·ä½å¯¹è®¡ç®æºçå¹²æ°
åçæ¯æè´æ°é¨åå ¨é¨ç§»å°éè´æ°æ¹åï¼ä¹å°±æ¯è¯´è¦æ第ä¸ä½ç¬¦å·ä½çæä¹ç»æ¶é¤æãæ¶é¤æ¹æ³ä¸ºï¼å¯¹äºè¡¥ç çæ£æ°ï¼ç¬¦å·ä½ç±0å为1ï¼å¢å¤§ï¼å¯¹äºè¡¥ç çè´æ°ï¼ç¬¦å·ä½æ¦å¿µæ¶é¤ï¼å¨è®¡ç®æºä¸è¢«å®ä¹ä¸ºæ£æ°ï¼å为äºç¡®ä¿åè´æ°å°äºåæ£æ°ï¼ç¬¦å·ä½ç±1å为0ã
为äºä¿è¯æ¯ä¸ªæ°ä¹é´å¤§å°å ³ç³»ä¸åï¼è¦ç¨è¡¥ç æ¥è½¬æ¢æ移ç ï¼ç¨åç æ¥è½¬æ¢çè¯ï¼è´æ°ä¹é´ç大å°å ³ç³»ä¼å转ã
æ°å¦å ¬å¼ï¼
å®è§ä¸æ¥çæ¯æå± ä¸çæ´ä¸ªæ°è½´å¹³ç§»å°äºéè´åè½´ä¸ï¼æ¯ä¸ªæ°ä¹é´ç大å°å ³ç³»ä¸åã
纯å°æ°[X] 移 =1+X
纯æ´æ° [X] 移 = (ä¸è¬æ å)
移ç æä¹æ¥ï¼ç§»ç åè¡¥ç å°¾æ°ç¸åï¼ç¬¦å·ä½ç¸å(ä¹å°±æ¯è¡¥ç é¦ä½ç1->0 ;0->1ï¼
å 为移ç ä»è¡¥ç é£éæ¥ï¼æ以ä¹è½é¢å¤å¤è¡¨ç¤ºä¸ä¸ªæ°
计算机中的源码原代码、补码、和进marlin如何修改源码逆码怎么表示?
一、源码小数部分的和进原码和补码可以表示为两个复数的分子和分母,然后计算二进制小数系统,源码根据下面三步的和进方法就会找出小数源代码和补码的百位形式。/=B/2^6=0.B
-/=B/2^7=0.B
二、源码将十进制十进制原始码和补码转换成二进制十进制,和进然后根据下面三步的源码方法求出十进制源代码和补码形式。一个
0.=0.B
0.=0.B
三、和进管家帮源码二进制十进制对应的源码原码和补码
[/]源代码=[0.B]源代码=B
[-/]源代码=[0.b]源代码=B
[0.]原码=[0.b]原码=B
[0.]源代码=[0.B]源代码=B
[/]补体=[0.B]补体=B
[-/]补体=[0.b]补体=B
[0.]补码=[0.b]补码=B
[0.]补体=[0.B]补体=B
扩展资料:
原码、逆码、补码的使用:
在计算机中对数字编码有三种方法,对于正数,这三种方法返回的结果是相同的。
+1=[原码]=[逆码]=[补码]
对于这个负数:
对计算机来说,加、减、乘、除是最基本的运算。有必要使设计尽可能简单。如果计算机能够区分符号位,那么计算机的健康咨询源码基本电路设计就会变得更加复杂。
负的正数等于正的负数,2-1等于2+(-1)所以这个机器只做加法,不做减法。符号位参与运算,只保留加法运算。
(1)原始代码操作:
十进制操作:1-1=0。
1-1=1+(-1)=[源代码]+[源代码]=[源代码]=-2。
如果用原代码来表示,让符号位也参与计算,对于减法,结果显然是不正确的,所以计算机不使用原代码来表示一个数字。
(2)逆码运算:
为了解决原码相减的ddt源码解析问题,引入了逆码。
十进制操作:1-1=0。
1-1=1+(-1)=[源代码]+[源代码]=[源代码]+[源代码]=[源代码]=[源代码]=-0。
使用反减法,结果的真值部分是正确的,但在特定的值“0”。虽然+0和-0在某种意义上是相同的,但是0加上符号是没有意义的,[源代码]和[源代码]都代表0。
(3)补充操作:
补语的出现解决了零和两个码的符号问题。
十进制运算:1-1=0。
1-1=1+(-1)=[原码]+[原码]=[补码]+[补码]=[补码]=[原码]=0。
这样,tor框架源码0表示为[],而之前的-0问题不存在,可以表示为[]-。
(-1)+(-)=[源代码]+[源代码]=[补充]+[补充]=[补充]=-。
-1-的结果应该是-。在补码操作的结果中,[补码]是-,但是请注意,由于-0的补码实际上是用来表示-的,所以-没有原码和逆码。(-的补码表[补码]计算出的[原码]是不正确的)。
原码、反码、补码怎么转换为十进制数?
[+0]原码= , [-0]原码=[+0]反码= , [-0]反码=
[+0]补码= , [-0]补码=
补码没有正0与负0之分。正数的反码、补码和其源码相同,负数的反码是其源码,除符号位外其他位取反负数的补码是取其反码后加1。
详细释义:
所谓原码就是二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
(一)反码表示法规定:
1、正数的反码与其原码相同;
2、负数的反码是对正数逐位取反,符号位保持为1;
(二)对于二进制原码求反码:
(()原)反=对正数()原含符号位取反= 反码 (,1为符号码,故为负)
() 二进制= -2 十进制
(三)对于八进制:
举例 某linux平台设置了默认的目录权限为(rwxr-xr-x),八进制表示为,那么,umask是权限位的反码,计算得到umask为的过程如下:
原码= 反码 (逐位解释:0为符号位,0为7-7,2为7-5,2为7-5)
(四)补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
扩展资料
转换方法
由于正数的原码、补码、反码表示方法均相同,不需转换。在此,仅以负数情况分析。
(1) 已知原码,求补码。
例:已知某数X的原码为B,试求X的补码和反码。
解:由[X]原=B知,X为负数。求其反码时,符号位不变,数值部分按位求反;求其补码时,再在其反码的末位加1。
1 0 1 1 0 1 0 0 原码
1 1 0 0 1 0 1 1 反码,符号位不变,数值位取反
1 +1
1 1 0 0 1 1 补码
故:[X]补=B,[X]反=B。
(2) 已知补码,求原码。
分析:按照求负数补码的逆过程,数值部分应是最低位减1,然后取反。但是对二进制数来说,先减1后取反和先取反后加1得到的结果是一样的,故仍可采用取反加1 有方法。
例:已知某数X的补码B,试求其原码。
解:由[X]补=B知,X为负数。
采用逆推法
1 1 1 0 1 1 1 0 补码
1 1 1 0 1 1 0 1 反码(末位减1)
1 0 0 1 0 0 1 0 原码(符号位不变,数值位取反)
百度百科 反码
2025-01-19 11:312197人浏览
2025-01-19 10:592539人浏览
2025-01-19 10:081211人浏览
2025-01-19 09:52139人浏览
2025-01-19 09:382460人浏览
2025-01-19 08:471942人浏览
中国消费者报福州讯记者张文章)12月12日,福建省市场监管局发布《电动自行车充电设施运营单位收费“十要十不得”指引》以下简称《指引》),对各电动自行车充电设施运营单位提出具体要求,进一步规范其充电收费
中国消费者报哈尔滨讯(崔明太 记者 刘传江)3月19日中午,黑龙江省齐齐哈尔市援鄂医疗队的白衣战士胜利完成任务回到家乡,入住齐齐哈尔市铁锋区和美国际酒店进行休整。齐齐哈尔市市场监管局为确保医疗队员休整