欢迎来到皮皮网网首页

【家政小程序源码 春哥】【airkiss 源码】【有声 源码】opencv 源码分析

来源:网校源码怎么下载 时间:2024-11-24 05:27:15

1.一文带你学会使用YOLO及Opencv完成像及视频流目标检测(上)|附源码
2.OpenCV在MacOS上源码编译OpenCV
3.OpenCV安装教程(编译源码,源码一次成功)提供安装好OpenCV的分析系统镜像
4.10分钟!用Python实现简单的源码人脸识别技术(附源码)
5.OpenCV Carotene 源码阅读(持续更新)
6.OpenCV:Mat源码解读

opencv 源码分析

一文带你学会使用YOLO及Opencv完成像及视频流目标检测(上)|附源码

       本文旨在帮助读者掌握使用YOLO和OpenCV进行图像及视频流目标检测的方法,通过详细解释和附带源码,分析让学习过程更加直观易懂。源码

       在计算机视觉领域,分析家政小程序源码 春哥目标检测因其广泛应用,源码如人脸识别和行人检测,分析备受关注。源码YOLO(You Only Look Once)算法,分析由一位幽默的源码作者提出,发展到现在的分析V3版本,是源码其中的佼佼者。YOLO作为单级检测器的分析代表,通过一次扫描就能完成对象位置和类别的源码预测,显著提高了检测速度,尽管在精度上可能不如两阶段检测器如R-CNN系列(如Faster R-CNN),但速度优势明显,如YOLOv3在GPU上可达 FPS甚至更高。

       项目结构清晰,包括四个文件夹和两个Python脚本,分别用于处理图像和视频。通过yolo.py脚本,我们可以将YOLO应用于图像对象检测。首先,确保安装了OpenCV 3.4.2+版本,然后导入所需的库并解析命令行参数。脚本中,通过YOLO的权重和配置文件加载模型,接着对输入图像进行预处理,利用YOLO层输出筛选和非最大值抑制(NMS)技术,最后在图像上显示检测结果。

       尽管YOLO在大多数情况下都能准确检测出物体,但也会遇到一些挑战,如图像中物体的airkiss 源码模糊、遮挡或类似物体的混淆。通过实际的检测示例,可以看到YOLO在复杂场景中的表现。了解这些局限性有助于我们更好地理解和使用YOLO进行目标检测。

       要开始实践,只需按照教程操作,通过终端执行相关命令,即可体验YOLO的图像检测功能。对于更深入的学习和更多技术分享,可以关注阿里云云栖社区的知乎机构号获取更多内容。

OpenCV在MacOS上源码编译OpenCV

       MacOS上OpenCV源码编译与使用教程

       在视觉任务中,开源库OpenCV经常被用到,它支持多种语言接口,适用于多平台。在MacOS上直接安装包不可用时,我们需要自行编译。本文将指导您从opencv_4.8.0和opencv_contrib_4.8.0版本入手,详细展示源码编译与配置过程。

       1. 下载源码并解压

       首先,从官网下载对应版本(4.8.0)的源码,确保opencv与opencv_contrib的版本一致。通过命令行进行下载,解压后放置于工作目录。

       2. 准备CMake

       OpenCV支持CMake编译,需要先安装。创建编译文件夹,然后使用CMake指令配置编译环境,注意指定opencv和opencv_contrib的路径。

       3. CMake编译与下载依赖

       完成CMake配置后,进行make编译,注意网络通畅以确保第三方库的下载。编译成功后,会生成所需文件。

       4. 安装与案例测试

       执行make install,有声 源码安装OpenCV到指定路径。接着,创建一个C++文件main.cpp,编写简单代码以读取并展示,通过CMakeLists.txt文件配置编译路径。

       5. VS Code环境测试

       在VS Code中,通过CMakeLists.txt配置并编译main.cpp,确认OpenCV库路径正确,运行程序,成功处理。

       总结

       通过上述步骤,您已在MacOS上成功源码编译并配置了OpenCV,实现了处理功能。在实际项目中,这将为您提供灵活的环境和更好的控制。

OpenCV安装教程(编译源码,一次成功)提供安装好OpenCV的系统镜像

       本文提供了一套简洁明了的OpenCV安装教程,旨在帮助开发者实现一次成功安装。首先,选择官方Raspbian-buster-full系统作为操作平台,并建议更换源至清华源,以确保下载过程顺利,避免遇到如GTK2.0下载失败等问题。对于远程操作需求,外接屏幕或使用VNC远程连接是可行方案,同时通过tee命令记录编译过程,以便在远程连接中断时仍能查看详细信息。

       安装系统镜像,完成OpenCV安装后,生成的镜像文件大小仅4.G,压缩后为2.G,直接烧录至TF卡即可使用。该系统已预装VNC等必备软件,配置了静态IP,luckymoney 源码提供详尽的使用指南,包括树莓派和Windows系统间的文件复制和传输方法。系统兼容树莓派4和3型号,对于有补充需求之处,将在文章末尾进行说明。

       正式安装OpenCV,首先确保安装所需的依赖工具和图像、视频库。按照步骤逐一进行,包括安装构建必需工具、图像工具包、视频工具包、GTK2.0以及优化函数包。在编译OpenCV源码前,下载并解压OpenCV3.4.3及opencv_contrib3.4.3(选择版本时需确保二者版本号一致)。

       采用直接下载或wget下载两种方法获取源码,解压后进入源码目录。创建release文件夹,用于存放cmake编译时产生的临时文件。设置cmake编译参数,安装目录默认为/usr/local,确保参数正确配置,尤其是对于root用户下的cmake命令,需修改OPENCV_EXTRA_MODULES_PATH的值为绝对路径。

       编译过程中,确认进度到达%,以验证安装成功。进行其他配置,包括设置库路径,以便于使用OpenCV库,也可选择不进行设置。配置opencv.conf和bash.bashrc文件,进行必要的参数添加,重启树莓派或重新登录用户后,STLlist源码测试OpenCV使用是否正常。

       演示Python程序使用OpenCV画一条直线,确保Python编译器已安装,执行相关代码。系统镜像中额外提供远程连接和文件传输功能的说明,包括使用VNC或Putty等工具远程控制树莓派的方法,以及如何在树莓派与Windows系统间进行复制粘贴,通过autocutsel软件简化操作流程。

分钟!用Python实现简单的人脸识别技术(附源码)

       Python实现简单的人脸识别技术,主要依赖于Python语言的胶水特性,通过调用特定的库包即可实现。这里介绍的是一种较为准确的实现方法。实现步骤包括准备分类器、引入相关包、创建模型、以及最后的人脸识别过程。首先,需确保正确区分人脸的分类器可用,可以使用预训练的模型以提高准确度。所用的包主要包括:CV2(OpenCV)用于图像识别与摄像头调用,os用于文件操作,numpy进行数学运算,PIL用于图像处理。

       为了实现人脸识别,需要执行代码以加载并使用分类器。执行“face_detector = cv2.CascadeClassifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”时,确保目录名中无中文字符,以免引发错误。这样,程序就可以识别出目标对象。

       然后,选择合适的算法建立模型。本次使用的是OpenCV内置的FaceRecognizer类,包含三种人脸识别算法:eigenface、fisherface和LBPHFaceRecognizer。LBPH是一种纹理特征提取方式,可以反映出图像局部的纹理信息。

       创建一个Python文件(如trainner.py),用于编写数据集生成脚本,并在同目录下创建一个文件夹(如trainner)存放训练后的识别器。这一步让计算机识别出独特的人脸。

       接下来是识别阶段。通过检测、校验和输出实现识别过程,将此整合到一个统一的文件中。现在,程序可以识别并确认目标对象。

       通过其他组合,如集成检测与开机检测等功能,可以进一步扩展应用范围。实现这一过程后,你将掌握Python简单人脸识别技术。

       若遇到问题,首先确保使用Python 2.7版本,并通过pip安装numpy和对应版本的opencv。针对特定错误(如“module 'object' has no attribute 'face'”),使用pip install opencv-contrib-python解决。如有疑问或遇到其他问题,请随时联系博主获取帮助。

OpenCV Carotene 源码阅读(持续更新)

       OpenCV的Carotene库是NVIDIA为优化计算机视觉(CV)操作而精心设计的,特别针对ARM Neon架构,旨在加速诸如resize和Canny等关键算法。这款库以其清晰的代码和对SIMD编程初学者的友好性而备受赞誉。本文将深入探索Carotene的魅力,揭示其独特的功能点,如accumulate函数的多变接口,包括square accumulate和addweight,后者展示了创新的处理策略。

       Carotene的Blur(k3x3_u8)处理方法与众不同,采用了seperateFilter算法,而非传统的O(1)复杂度,展示了其在效率优化上的独到之处。值得一提的是,行方向移位求和和normalize系数的量化计算,都被Carotene以精细的技巧逐一解析。要了解更多细节,不妨直接查看其源码,那里充满了值得学习的见解和实践经验。

       Carotene在指令处理上展现出了高效能,如一次性执行乘系数、类型转换和右移等操作,通过vqrdmulhq_s等矢量化指令,实现了寄存器数据的复用。对于边界处理,left_border通过set_lane技术轻松搞定,而right_border的成本则更低。库中还包括了integral和sqrtIntegral的实现,行方向积分的向量化通过移位操作得以高效完成,即使在arm Neon缺乏element shift指令的情况下,Carotene也能通过uint_t标量移位巧妙解决。

       在模糊处理上,GaussianBlur遵循Blur的优化思路,对gauss_kernel进行了量化。另外,还有诸如absdiff、add_weighted、add、bitwise以及channel_extract/combine等N-1种基础算子,它们巧妙地结合了neon指令和宏定义,为性能提升做出了贡献。这些细节的精心设计,充分体现了Carotene在提升OpenCV性能上的匠心独运。

       总的来说,Carotene的源码是学习SIMD编程和OpenCV优化的绝佳资源,无论是对于开发者还是对性能追求者来说,都是一份值得深入探索的宝藏。如果你对这些技术感兴趣,不要犹豫,立即投身于源码的世界,你会发现其中隐藏的无数精彩。

OpenCV:Mat源码解读

       OpenCV中的核心组件Mat是理解库运作的关键。通过深入阅读其源码,我们可以了解到Mat如何管理内存、与Sub-mat的关系,以及如何支持不同数据类型。本文旨在提供对Mat类的深入理解,帮助你掌握Mat的内存管理机制、数据结构设计,以及Mat中数据类型的表示方式。通过本文,你将对Mat的基本构成有清晰的认识,并理解内存分配的策略。

       Mat类的实现类似于一个容器,主要构造和析构不同类型的Mat。Mat的内部数据存储在UMatData结构中,通过m.data指针访问。内存分配由UMatData和MatAllocator共同完成。Mat的shape由size(大小)和step(步长)组成,便于计算每个维度所需的内存空间。

       UMatData结构隐藏了内存配置的细节,而MatAllocator根据不同设备实现底层不同的内存管理。以CPU的底层实现为例,这里仅展示其基本架构。理解了这些,Mat的基本构造就有了基础概念。

       Mat的类型设计是其独特之处,用CV_{ bit}{ U/F/S}C{ n}表示,如CV_FC3表示3通道位浮点。其中depth部分决定基础类型,如CV_F。Mat的大小设计是根据不同类型进行优化的。在OpenCV 5.x版本中,depth用低5位表示,其余位用于通道数。

       通过实际数据类型的例子,如通道的8U类型m0和其子Matm2,可以观察到CONT_FLAG和SUBMAT_FLAG的变化,以及对于非常用数据格式如CV_8UC()的性能影响。OpenCV对1、3、4通道数据有优化,而3通道的数据在某些情况下速度可能接近4通道。

       最后,Mat的高效使用不仅依赖于基础计算,MatExpr起到了桥梁作用,它向上简化接口,向下连接加速指令。理解了Mat的这些特性,你将能够更有效地利用OpenCV的Mat进行数据处理。

如何从源码编译OpenCV4Android库

       本文介绍如何从源码编译OpenCV4Android库,解决实际应用中遇到的问题。

       通常,Android平台已有官方提供的OpenCV库,但实际应用中可能会遇到无法同时使用SNPE(高性能神经网络加速库)和OpenCV的问题,因为SNPE使用的STL链接的是libc++,而OpenCV默认使用的是gnu_stl,这会导致gradle配置无法正常编译。

       为解决此问题,需要自行编译OpenCV4Android库,可选择在Linux下基于NDK编译,或在Windows中使用MinGW编译。本文选择前者,便于生成Docker镜像,方便部署。

       对于已经配置好的编译镜像,可通过Docker命令启动,并设置环境变量。若需修改NDK或SDK版本,同样更新环境变量。然后进入目录开始编译,修改编译选项。

       若从头开始搭建编译环境,首先生成基于Ubuntu.的Docker基础容器,安装基础工具,如vim、ant或gradle。安装与配置Cmake,确保版本为3.6或以上,以支持HTTPS,避免编译过程中的文件下载失败。安装JDK和Android SDK,并配置环境变量。

       下载OpenCV源码和contrib库,选择合适的分支以避免编译错误。编译过程可使用指定配置文件ndk-.config.py,选择需要编译的指令集、STL库等。

       完成编译后,即可得到OpenCV-Android-SDK库,适用于Android Studio中的Java或C++接口使用,提供方便的计算机视觉功能。