1.从应用到源码理解STL反向迭代器
2.八数码C++源代码
从应用到源码理解STL反向迭代器
在实际应用中,源码我们可能需要从序列容器(如vector)的源码尾部移除不满足特定条件的部分元素。这通常涉及从尾部开始的源码迭代操作。然而,源码容器成员函数erase不接受反向迭代器作为参数。源码因此,源码qq圈圈赞源码我们需要将反向迭代器转换为普通迭代器。源码先来看看STL迭代器的源码分类和转换关系。
STL迭代器主要分为用途迭代器,源码它们之间存在转换关系,源码但不是源码所有迭代器类型都可以相互转换。转换关系需通过迭代器的源码构造函数定义,有些可以直接转换,源码有些则需调用特定方法。源码
特别地,源码富贵玩 源码反向迭代器到普通迭代器的转换可以通过调用反向迭代器的base()方法实现。但初版代码存在缺陷,未能按预期将元素正确删除。通过跟踪代码并参考cpp reference文档,我们发现base()方法返回的迭代器实际上比预期位置靠后一个元素。
为了修正这个问题,我们需要将通过base()方法得到的少林武王 源码迭代器向前移动一个位置,以正确指向第一个符合移除条件的元素。修改代码后,可以确保元素按约定进行删除。
在一般场景下,迭代器的使用主要涉及遍历访问和遍历修改元素值。对于删除和插入操作,可能需要将反向迭代器转换为普通迭代器。结算中心 源码STL容器的erase和insert成员函数仅接受普通迭代器作为参数。
在执行插入操作时,直接使用base()将反向迭代器转换为普通迭代器,并传入insert函数,其语义是一致的。而在删除操作中,直接使用base()转换后的源码软件分享迭代器可能无法正确执行,因为反向迭代器和普通迭代器在终止位置上的处理存在差异。为了修正此问题,需要手动调整,确保迭代器的有效性。
对于反向迭代器,通过正确的反向迭代操作得到的迭代器,在不等于rend()返回的迭代器时,都是指向有效值的。因此,除了rend().base()-1操作可能导致问题外,其他转换通常都是安全的。
讨论end()迭代器的前移操作时,需要考虑是否能够安全地访问容器的尾端元素。对于随机访问迭代器,如vector容器,end()返回的迭代器可以进行前移操作,但需确保移动操作的合法性。对于双向访问迭代器如list,同样可以进行前移操作以访问尾端元素。
结束讨论前,还需要确认iterator的-1操作是否对指向容器尾端元素的迭代器有效。在vector容器中,通过end成员函数返回的迭代器通过-1操作可以得到指向尾端元素的普通迭代器。对于list容器,其end成员函数返回的迭代器也支持前移操作。
总结来说,支持向前移动操作的迭代器访问容器内元素的容器,其end成员函数通过前移操作可以得到一个指向容器尾端元素的迭代器。这符合双向迭代器的设定语义。通过反向迭代器的原理,我们也能验证end()函数返回的迭代器可以进行反向移动。
八数码C++源代码
#include<cstdio>
#include<vector>
#include<queue>
#include<ctime>
#define maxhash
#define hash(x) x%maxhash
using namespace std;
typedef unsigned long long ULL;
vector<ULL>list[maxhash];
vector<int>dist[maxhash];
inline int abs(int x)
{
return x<0?-x:x;
}
int hval[][];
void fill_hval(int *d)
{
for(int i=0;i<=8;i++)//number i
{
int pos;
for(int k=1;k<=9;k++)//i's position
if(d[k]==i)
{
pos=k;
break;
}
for(int j=1;j<=9;j++)
{
hval[i][j]=abs((j-1)/3-(pos-1)/3)+abs((j-1)%3-(pos-1)%3);
}
}
}
int h(ULL d)
{
int answer=0;
for(int i=9;i>=1;i--)
{
int x=d%;
d/=;
answer+=hval[x][i];
}
return answer;
}
int ToARR(ULL s,int *d)
{
int z=0;
for(int i=9;i>=1;i--)
{
d[i]=s%;
if(d[i]==0) z=i;
s/=;
}
return z;
}
ULL ToULL(int *d)
{
ULL ans=0;
for(int i=1;i<=9;i++)
ans=ans*+d[i];
return ans;
}
void insert(ULL x,int di)
{
ULL hx=hash(x);
list[hx].push_back(x);
dist[hx].push_back(di);
}
int find(ULL x)
{
ULL hx=hash(x);
int size=list[hx].size();
for(int i=0;i<size;i++)
if(x==list[hx][i]) return dist[hx][i];
return -1;
}
inline void swap(int &x,int &y)
{
int t=x;
x=y;
y=t;
}
struct state{
int step;
ULL x;
friend bool operator <(state a,state b)
{
return a.step>b.step;
}
};
int cnt=0;
void AStar(int *from,int *to)
{
priority_queue<state>q;
ULL x=ToULL(from);
ULL y=ToULL(to);
fill_hval(to);
q.push((state){ h(x),x});
insert(x,0);
int d[];
while(!q.empty())
{
cnt++;
state s=q.top();
ULL i=s.x; q.pop();
int step=find(i);
int z=ToARR(i,d);
//printf("%lld %d %d\n",i,step,z);
if(i==y) return;
if(z-3>0)
{
swap(d[z],d[z-3]);
ULL j=ToULL(d);
swap(d[z],d[z-3]);
if(find(j)!=-1) goto out1;
q.push((state){ step+h(j),j});
insert(j,step+1);
}
out1:
if(z+3<)
{
swap(d[z],d[z+3]);
ULL j=ToULL(d);
swap(d[z],d[z+3]);
if(find(j)!=-1) goto out2;
q.push((state){ step+h(j),j});
insert(j,step+1);
}
out2:
if(z%3!=0)
{
swap(d[z],d[z+1]);
ULL j=ToULL(d);
swap(d[z],d[z+1]);
if(find(j)!=-1) goto out3;
q.push((state){ step+h(j),j});
insert(j,step+1);
}
out3:
if(z%3!=1)
{
swap(d[z],d[z-1]);
ULL j=ToULL(d);
swap(d[z],d[z-1]);
if(find(j)!=-1) continue;
q.push((state){ step+h(j),j});
insert(j,step+1);
}
}
}
int from[],to[];
void work()
{
for(int i=1;i<=9;i++)
scanf("%d",&from[i]);
for(int i=1;i<=9;i++)
scanf("%d",&to[i]);
AStar(from,to);
ULL y=ToULL(to);
printf("%d ",find(y));
#ifdef DEBUG
printf("%d ",clock());
printf("%d ",cnt);
#endif
}
int main()
{
#ifdef DEBUG
freopen("debug.in","r",stdin);
freopen("debug.out","w",stdout);
#endif
work();
return 0;
}
这是基于曼哈顿距离的估价函数的Astar
2025-01-18 13:50
2025-01-18 13:14
2025-01-18 12:55
2025-01-18 12:39
2025-01-18 12:27
2025-01-18 11:56