1.Go的源码执行原理以及Go的命令
2.client-go 源码分析(4) - ClientSet客户端 和 DynamicClient客户端
3.Go看源码必会知识之unsafe包
4.gobin英文是什么意思?
5.CS:GO官方封禁超304000作弊帐号;任天堂疑似开发工具、源代码等机密数据泄露;Valorant上线全新处罚功能
6.go语言是安全编译型还是解释型
Go的执行原理以及Go的命令
Go的源码文件主要分为三类:命令源码文件、库源码文件和测试源码文件。源码
命令源码文件是安全Go程序的入口,被声明为main包,源码包含main函数。安全冬奥小程序源码文件被安装后,源码会根据GOPATH设置存放于当前工作区的安全bin目录或GOBIN设置的目录。这些文件可以单独运行,源码使用go run命令直接执行,安全或通过go build或go install生成可执行文件。源码命令源码文件不应与其他文件混合在同一个代码包中。安全
库源码文件不具备命令源码文件的源码特征,是安全普通源码文件。文件被安装后,源码对应的归档文件(.a文件)会被存放在当前工作区的pkg目录下的平台相关目录。库源码文件不能通过go build或go install编译和安装。
测试源码文件以_test.go为后缀,并包含Test或Benchmark函数。Test函数接受*testing.T参数,用于功能测试;Benchmark函数接受*testing.B参数,用于性能测试。
命令方面,Go的最新版本1.提供了个基本命令,如build、get、install、run等。build命令用于编译代码包及其依赖;get命令用于下载远程代码仓库中的代码包;install命令用于编译并安装代码包;run命令用于运行命令源码文件。build和install命令会在指定目录生成可执行文件;run命令只能运行命令源码文件。install命令还负责将编译结果移动到bin目录或GOBIN目录。get命令会将代码包下载到GOPATH中的src目录。clean命令用于清除已编译生成的文件。
fmt命令用来格式化代码文件,通常与gofmt命令结合使用,格式化后的结果会覆盖源代码文件。test命令自动读取_test.go文件,生成并运行测试用的可执行文件。doc命令提供强大的文档功能,可以查看相应package的文档,甚至创建本地版本的golang.org文档。fix命令用于修复老版本代码到新版本,version命令查看当前Go版本,env命令查看Go环境变量,list命令列出当前安装的所有package。
综上所述,Go的源码文件分类清晰,命令提供了全面的编译、下载、安装、测试和文档支持,满足了开发者的需求。
client-go 源码分析(4) - ClientSet客户端 和 DynamicClient客户端
本篇文章主要探讨ClientSet客户端与DynamicClient客户端的特性差异。ClientSet以其类型安全的优势,专门操作内置的Kubernetes资源,如Pods。其核心在于通过clientset.CoreV1()获取到的corev1.CoreV1Client,这个对象实现了PodsGetter接口,进而执行Pods方法,如查询default namespace下的所有Pod。
示例代码展示了如何通过CoreV1Client获取Pods,实际上是通过调用restclient客户端的List方法。ClientSet的CRUD操作均基于已知的结构化数据。相比之下,DynamicClient更为灵活,它不仅能操作内置资源,还能处理CRD自定义资源,因为其内部使用了Unstructured,溯源码查询入口以适应非结构化数据的处理。
DynamicClient与ClientSet的差异在于,它支持动态操作任何Kubernetes资源,包括CRD。使用DynamicClient时,如删除、创建资源,也是通过底层的RESTClient客户端实现。调用DynamicClient时,会先通过Runtime将响应体转换为非结构化的数据,然后利用DefaultUnstructuredConverter将其转换为Kubernetes资源对象。
值得注意的是,与ClientSet一样,DynamicClient客户端也支持ResetClient,只是在处理非结构化数据时有所不同。关注“后端云”微信公众号,获取更多技术资讯和教程。
Go看源码必会知识之unsafe包
前言
有看源码的朋友应该会发现,Go标准库中大量使用了unsafe.pointer,要想更好的理解源码实现,就要知道unsafe.pointer到底是什么?所以今天就与大家来聊一聊unsafe包。
什么是unsafe众所周知,Go语言被设计成一门强类型的静态语言,那么他的类型就不能改变了,静态也是意味着类型检查在运行前就做了。所以在Go语言中是不允许两个指针类型进行转换的,使用过C语言的朋友应该知道这在C语言中是可以实现的,Go中不允许这么使用是处于安全考虑,毕竟强制转型会引起各种各样的麻烦,有时这些麻烦很容易被察觉,有时他们却又隐藏极深,难以察觉。大多数读者可能不明白为什么类型转换是不安全的,这里用C语言举一个简单的例子:
int main(){ double pi = 3.;double *pv = πvoid *temp = pd;int *p = temp;}在标准C语言中,任何非void类型的指针都可以和void类型的指针相互指派,也可以通过void类型指针作为中介,实现不同类型的指针间接相互转换。上面示例中,指针pv指向的空间本是一个双精度数据,占8个字节,但是经过转换后,p指向的是一个4字节的int类型。这种发生内存截断的设计缺陷会在转换后进行内存访问是存在安全隐患。我想这就是Go语言被设计成强类型语言的原因之一吧。
虽然类型转换是不安全的,但是在一些特殊场景下,使用了它,可以打破Go的类型和内存安全机制,可以绕过类型系统低效,提高运行效率。所以Go标准库中提供了一个unsafe包,之所以叫这个名字,就是不推荐大家使用,但是不是不能用,如果你掌握的特别好,还是可以实践的。
unsafe 实现原理在使用之前我们先来看一下unsafe的源码部分,标准库unsafe包中只提供了3``种方法,分别是:
func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptrSizeof(x ArbitrayType)方法主要作用是用返回类型x所占据的字节数,但并不包含x所指向的内容的大小,与C语言标准库中的Sizeof()方法功能一样,比如在位机器上,一个指针返回大小就是4字节。
Offsetof(x ArbitraryType)方法主要作用是返回结构体成员在内存中的位置离结构体起始处(结构体的第一个字段的偏移量都是0)的字节数,即偏移量,我们在注释中看一看到其入参必须是一个结构体,其返回值是在线字帖生成源码一个常量。
Alignof(x ArbitratyType)的主要作用是返回一个类型的对齐值,也可以叫做对齐系数或者对齐倍数。对齐值是一个和内存对齐有关的值,合理的内存对齐可以提高内存读写的性能。一般对齐值是2^n,最大不会超过8(受内存对齐影响).获取对齐值还可以使用反射包的函数,也就是说:unsafe.Alignof(x)等价于reflect.TypeOf(x).Align()。对于任意类型的变量x,unsafe.Alignof(x)至少为1。对于struct结构体类型的变量x,计算x每一个字段f的unsafe.Alignof(x,f),unsafe.Alignof(x)等于其中的最大值。对于array数组类型的变量x,unsafe.Alignof(x)等于构成数组的元素类型的对齐倍数。没有任何字段的空struct{ }和没有任何元素的array占据的内存空间大小为0,不同大小为0的变量可能指向同一块地址。
细心的朋友会发发现这三个方法返回的都是uintptr类型,这个目的就是可以和unsafe.poniter类型相互转换,因为*T是不能计算偏移量的,也不能进行计算,但是uintptr是可以的,所以可以使用uintptr类型进行计算,这样就可以可以访问特定的内存了,达到对不同的内存读写的目的。三个方法的入参都是ArbitraryType类型,代表着任意类型的意思,同时还提供了一个Pointer指针类型,即像void *一样的通用型指针。
type ArbitraryType inttype Pointer *ArbitraryType// uintptr 是一个整数类型,它足够大,可以存储type uintptr uintptr上面说了这么多,可能会有点懵,在这里对三种指针类型做一个总结:
*T:普通类型指针类型,用于传递对象地址,不能进行指针运算。
unsafe.poniter:通用指针类型,用于转换不同类型的指针,不能进行指针运算,不能读取内存存储的值(需转换到某一类型的普通指针)
uintptr:用于指针运算,GC不把uintptr当指针,uintptr无法持有对象。uintptr类型的目标会被回收。
三者关系就是:unsafe.Pointer是桥梁,可以让任意类型的指针实现相互转换,也可以将任意类型的指针转换为uintptr进行指针运算,也就说uintptr是用来与unsafe.Pointer打配合,用于指针运算。画个图表示一下:
基本原理就说到这里啦,接下来我们一起来看看如何使用~
unsafe.Pointer基本使用我们在上一篇分析atomic.Value源码时,看到atomic/value.go中定义了一个ifaceWords结构,其中typ和data字段类型就是unsafe.Poniter,这里使用unsafe.Poniter类型的原因是传入的值就是interface{ }类型,使用unsafe.Pointer强转成ifaceWords类型,这样可以把类型和值都保存了下来,方便后面的写入类型检查。截取部分代码如下:
// ifaceWords is interface{ } internal representation.type ifaceWords struct { typunsafe.Pointer data unsafe.Pointer}// Load returns the value set by the most recent Store.// It returns nil if there has been no call to Store for this Value.func (v *Value) Load() (x interface{ }) { vp := (*ifaceWords)(unsafe.Pointer(v))for { typ := LoadPointer(&vp.typ) // 读取已经存在值的类型/**..... 中间省略**/// First store completed. Check type and overwrite data.if typ != xp.typ { //当前类型与要存入的类型做对比 panic("sync/atomic: store of inconsistently typed value into Value")}}上面就是源码中使用unsafe.Pointer的一个例子,有一天当你准备读源码时,unsafe.pointer的使用到处可见。好啦,接下来我们写一个简单的例子,看看unsafe.Pointer是如何使用的。
func main(){ number := 5 pointer := &number fmt.Printf("number:addr:%p, value:%d\n",pointer,*pointer) floatNumber := (*float)(unsafe.Pointer(pointer)) *floatNumber = *floatNumber + 3 fmt.Printf("float:addr:%p, value:%f\n",floatNumber,*floatNumber)}运行结果:
number:addr:0xc, value:5float:addr:0xc, value:3.由运行可知使用unsafe.Pointer强制类型转换后指针指向的地址是没有改变,只是类型发生了改变。这个例子本身没什么意义,正常项目中也不会这样使用。
总结一下基本使用:先把*T类型转换成unsafe.Pointer类型,美容技师预约源码然后在进行强制转换转成你需要的指针类型即可。
Sizeof、Alignof、Offsetof三个函数的基本使用先看一个例子:
type User struct { Name string Age uint Gender bool // 男:true 女:false 就是举个例子别吐槽我这么用。。。。}func func_example(){ // sizeof fmt.Println(unsafe.Sizeof(true)) fmt.Println(unsafe.Sizeof(int8(0))) fmt.Println(unsafe.Sizeof(int())) fmt.Println(unsafe.Sizeof(int())) fmt.Println(unsafe.Sizeof(int())) fmt.Println(unsafe.Sizeof("asong")) fmt.Println(unsafe.Sizeof([]int{ 1,3,4})) // Offsetof user := User{ Name: "Asong", Age: ,Gender: true} userNamePointer := unsafe.Pointer(&user) nNamePointer := (*string)(unsafe.Pointer(userNamePointer)) *nNamePointer = "Golang梦工厂" nAgePointer := (*uint)(unsafe.Pointer(uintptr(userNamePointer) + unsafe.Offsetof(user.Age))) *nAgePointer = nGender := (*bool)(unsafe.Pointer(uintptr(userNamePointer)+unsafe.Offsetof(user.Gender))) *nGender = false fmt.Printf("u.Name: %s, u.Age: %d,u.Gender: %v\n", user.Name, user.Age,user.Gender) // Alignof var b bool var i8 int8 var i int var i int var f float var s string var m map[string]string var p *int fmt.Println(unsafe.Alignof(b)) fmt.Println(unsafe.Alignof(i8)) fmt.Println(unsafe.Alignof(i)) fmt.Println(unsafe.Alignof(i)) fmt.Println(unsafe.Alignof(f)) fmt.Println(unsafe.Alignof(s)) fmt.Println(unsafe.Alignof(m)) fmt.Println(unsafe.Alignof(p))}为了省事,把三个函数的使用示例放到了一起,首先看sizeof方法,我们可以知道各个类型所占字节大小,这里重点说一下int类型,Go语言中的int类型的具体大小是跟机器的 CPU位数相关的。如果 CPU 是 位的,那么int就占4字节,如果 CPU是位的,那么 int 就占8 字节,这里我的电脑是位的,所以结果就是8字节。
然后我们在看Offsetof函数,我想要修改结构体中成员变量,第一个成员变量是不需要进行偏移量计算的,直接取出指针后转换为unsafe.pointer,在强制给他转换成字符串类型的指针值即可。如果要修改其他成员变量,需要进行偏移量计算,才可以对其内存地址修改,所以Offsetof方法就可返回成员变量在结构体中的偏移量,也就是返回结构体初始位置到成员变量之间的字节数。看代码时大家应该要住uintptr的使用,不可以用一个临时变量存储uintptr类型,前面我们提到过用于指针运算,GC不把uintptr当指针,uintptr无法持有对象。uintptr类型的目标会被回收,所以你不知道他什么时候会被GC掉,那样接下来的内存操作会发生什么样的错误,咱也不知道。比如这样一个例子:
// 切记不要这样使用p1 := uintptr(userNamePointer)nAgePointer := (*uint)(unsafe.Pointer(p1 + unsafe.Offsetof(user.Age)))最后看一下Alignof函数,主要是获取变量的对齐值,除了int、uintptr这些依赖CPU位数的类型,基本类型的对齐值都是固定的,结构体中对齐值取他的成员对齐值的最大值,结构体的对齐涉及到内存对齐,我们在下面详细介绍。
经典应用:string与[]byte的相互转换实现string与byte的转换,正常情况下,我们可能会写出这样的标准转换:
// string to []bytestr1 := "Golang梦工厂"by := []byte(s1)// []byte to stringstr2 := string(by)使用这种方式进行转换都会涉及底层数值的拷贝,所以想要实现零拷贝,我们可以使用unsafe.Pointer来实现,通过强转换直接完成指针的指向,从而使string和[]byte指向同一个底层数据。在reflect包中有·string和slice对应的结构体,他们的分别是:
type StringHeader struct { Data uintptr Lenint}type SliceHeader struct { Data uintptr Lenint Capint}StringHeader代表的是string运行时的表现形式(SliceHeader同理),通过对比string和slice运行时的表达可以看出,他们只有一个Cap字段不同,所以他们的内存布局是对齐的,所以可以通过unsafe.Pointer进行转换,因为可以写出如下代码:
func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr0上面的代码我们通过重新构造slice header和string header完成了类型转换,其实[]byte转换成string可以省略掉自己构造StringHeader的方式,直接使用强转就可以,因为string的底层也是[]byte,强转会自动构造,省略后的代码如下:
func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr1虽然这种方式更高效率,但是不推荐大家使用,前面也提高到了,大数据bi源码这要是不安全的,使用当不当会出现极大的隐患,一些严重的情况recover也不能捕获。
内存对齐现在计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但是实际情况是在访问特定类型变量的时候经常在特定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就对齐。
对齐的作用和原因:CPU访问内存时,并不是逐个字节访问,而是以字长(word size)单位访问。比如位的CPU,字长为4字节,那么CPU访问内存的单位也是4字节。这样设计可以减少CPU访问内存的次数,加大CPU访问内存的吞吐量。假设我们需要读取8个字节的数据,一次读取4个字节那么就只需读取2次就可以。内存对齐对实现变量的原子性操作也是有好处的,每次内存访问都是原子的,如果变量的大小不超过字长,那么内存对齐后,对该变量的访问就是原子的,这个特性在并发场景下至关重要。
我们来看这样一个例子:
func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr2从结果可以看出,字段放置不同的顺序,占用内存也不一样,这就是因为内存对齐影响了struct的大小,所以有时候合理的字段可以减少内存的开销。下面我们就一起来分析一下内存对齐,首先要明白什么是内存对齐的规则,C语言的对齐规则与Go语言一样,所以C语言的对齐规则对Go同样适用:
对于结构的各个成员,第一个成员位于偏移为0的位置,结构体第一个成员的偏移量(offset)为0,以后每个成员相对于结构体首地址的 offset 都是该成员大小与有效对齐值中较小那个的整数倍,如有需要编译器会在成员之间加上填充字节。
除了结构成员需要对齐,结构本身也需要对齐,结构的长度必须是编译器默认的对齐长度和成员中最长类型中最小的数据大小的倍数对齐。
好啦,知道规则了,我们现在来分析一下上面的例子,根据我的mac使用的位CPU,对齐参数是8来分析,int、[]int、string、bool对齐值分别是4、8、8、1,占用内存大小分别是4、、、1,我们先根据第一条对齐规则分析User1:
第一个字段类型是int,对齐值是4,大小为4,所以放在内存布局中的第一位.
第二个字段类型是[]int,对齐值是8,大小为,所以他的内存偏移值必须是8的倍数,所以在当前user1中,就不能从第4位开始了,必须从第5位开始,也就偏移量为8。第4,5,6,7位由编译器进行填充,一般为0值,也称之为空洞。第9位到第位为第二个字段B.
第三个字段类型是string,对齐值是8,大小为,所以他的内存偏移值必须是8的倍数,因为user1前两个字段就已经排到了第位,所以下一位的偏移量正好是,正好是字段C的对齐值的倍数,不用填充,可以直接排列第三个字段,也就是从第位到位第三个字段C.
第三个字段类型是bool,对齐值是1,大小为1,所以他的内存偏移值必须是1的倍数,因为user1前两个字段就已经排到了第位,所以下一位的偏移量正好是。正好是字段D的对齐值的倍数,不用填充,可以直接排列到第四个字段,也就是从到第位是第三个字段D.
好了现在第一条内存对齐规则后,内存长度已经为字节,我们开始使用内存的第2条规则进行对齐。根据第二条规则,默认对齐值是8,字段中最大类型程度是,取最小的那一个,所以求出结构体的对齐值是8,我们目前的内存长度是,不是8的倍数,所以需要补齐,所以最终的结果就是,补了7位。
说了这么多,画个图看一下吧:
现在你们应该懂了吧,按照这个思路再去分析其他两个struct吧,这里就不再分析了。
对于内存对齐这里还有一最后需要注意的知识点,空struct不占用任何存储空间,空 struct{ } 大小为 0,作为其他 struct 的字段时,一般不需要内存对齐。但是有一种情况除外:即当 struct{ } 作为结构体最后一个字段时,需要内存对齐。因为如果有指针指向该字段, 返回的地址将在结构体之外,如果此指针一直存活不释放对应的内存,就会有内存泄露的问题(该内存不因结构体释放而释放)。来看一个例子:
func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr3简单来说,对于任何占用0大小空间的类型,像struct { }或者[0]byte这些,如果该类型出现在结构体末尾,那么我们就假设它占用1个字节的大小。因此对于test1结构体,他看起来就是这样:`
func Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptr4因此在内存对齐时,最后结构体占用的字节就是8了。
重点要注意的问题:不要在结构体定义的最后添加零大小的类型
总结好啦,终于又到文章的末尾了,我们来简单的总结一下,unsafe 包绕过了 Go 的类型系统,达到直接操作内存的目的,使用它有一定的风险性。但是在某些场景下,使用 unsafe 包提供的函数会提升代码的效率,Go 源码中也是大量使用 unsafe 包。
unsafe 包定义了 Pointer 和三个函数:
type ArbitraryType inttype Pointer *ArbitraryTypefunc Sizeof(x ArbitraryType) uintptrfunc Offsetof(x ArbitraryType) uintptrfunc Alignof(x ArbitraryType) uintptruintptr 可以和 unsafe.Pointer 进行相互转换,uintptr 可以进行数学运算。这样,通过 uintptr 和 unsafe.Pointer 的结合就解决了 Go 指针不能进行数学运算的限制。通过 unsafe 相关函数,可以获取结构体私有成员的地址,进而对其做进一步的读写操作,突破 Go 的类型安全限制。
最后我们又学习了内存对齐的知识,这样设计可以减少CPU访问内存的次数,加大CPU访问内存的吞吐量,所以结构体中字段合理的排序可以更节省内存,注意:不要在结构体定义的最后添加零大小的类型。
原文:/post/好啦,这篇文章就到这里啦,素质三连(分享、点赞、在看)都是笔者持续创作更多优质内容的动力!
创建了一个Golang学习交流群,欢迎各位大佬们踊跃入群,我们一起学习交流。入群方式:加我vx拉你入群,或者公众号获取入群二维码
结尾给大家发一个小福利吧,最近我在看[微服务架构设计模式]这一本书,讲的很好,自己也收集了一本PDF,有需要的小伙可以到自行下载。获取方式:关注公众号:[Golang梦工厂],后台回复:[微服务],即可获取。
我翻译了一份GIN中文文档,会定期进行维护,有需要的小伙伴后台回复[gin
gobin英文是什么意思?
"gobin"这个词在英语中是没有实际含义的,但在计算机编程领域中,它有着重要的意义。Gobin是Go编程语言中的工具,可以将Go语言程序源代码编译成计算机可以执行的二进制文件。这个工具通过将Go代码编译成二进制文件,使得程序执行速度更快,且具有更高的安全性,因为用户不需要下载和安装源代码。因此,gobin可以帮助开发人员更高效地进行软件开发。
Gobin工具在 Go 中被引入,开发人员可以使用它来管理和构建可执行文件,同时可以作为Go模块的交付机制。Gobin可以让开发人员将Go应用程序编译成静态二进制文件,这意味着在运行时不需要安装Go语言的运行环境。此外,gobin还提供了一种新的方式,可以将Go程序打包成可执行文件,方便用户快速使用和部署。
Gobin是一种相对较新的技术,在Go语言社区中正在逐渐流行起来,特别是在云计算和分布式系统开发中。使用Gobin可以使得开发人员更容易地进行程序部署,提高程序的扩展性、安全性和稳定性。通过熟悉Gobin的使用方法,开发人员可以更高效地使用Go语言来构建高质量的应用程序,也可以在社区中分享自己的经验和知识,共同推动Go语言的发展。
CS:GO官方封禁超作弊帐号;任天堂疑似开发工具、源代码等机密数据泄露;Valorant上线全新处罚功能
腾讯游戏安全不定期收集海内外行业安全资讯并邀请资深安全专家对相关内容进行解析点评,帮助用户更全面、更透彻地了解行业动态。本期内容主要聚焦“新型反作弊措施”和“单机游戏破解问题”。在新型反作弊措施上: Valorant上线全新对局结束标记惩罚功能,用于警示轻度违规玩家;《守望先锋2》新上线四大游戏安全举措。在单机游戏破解问题上:国外知名黑客组叫嚣《霍格沃茨之遗》,声称将在十天内破解游戏;任天堂疑似开发工具、源代码等机密数据泄露。
一、Warzone 2正在 面临新型外挂—— DDoS攻击。今年2月,Warzone 2面临了一种新型外挂攻击—— DDoS攻击,被这类攻击会在短时间内生成一大堆数据包,让游戏的服务器对数据的处理量激增,从而使服务器处理过载,影响玩家正常登录游戏。
二、Valve 封禁了超过 , 名 CSGO 作弊者。近期,Valve 正在打击《CS:GO》中的作弊玩家,根据最近CSGO官方的一份报告显示,开发商在短短三个月内封禁了超过 , 名作弊者。
三、Valorant新处罚功能——对局结束后标记违规玩家。近期Riot games 更新公告,指出将对游戏中存在轻度违规的玩家进行标记,该标记系统是根据玩家在游戏中的行为,来跟踪 Valorant 中的轻度违规游戏行为的玩家。对于存在违规行为的玩家,在当局对局结束后,将会被标记为“近期存在违规行为”,同时这个标记也会被其他玩家看到。
四、黑客叫嚣将在十天内破解《Hogwarts Legacy 》。近期发售《霍格沃茨之遗》一度成为stema热门游戏,同时在线人数超五十万,热度可见一斑。然而国外知名游戏破解组却叫嚣将在十天内破解游戏,让所有玩家都可以免费下载游玩。更有消息表示,目前已有黑客掌握了《霍格沃茨之遗》世界地图的清晰路径。
五、《守望先锋2》团队宣布四项全新的游戏安全举措。自《守望先锋2》成为免费游戏以来,官方团队为维稳绿色游戏环境也不曾松懈。在最近的一次更新中,他们宣布了新的游戏安全举措,其中包括:破坏性语音聊天检测、自定义游戏审核、主播保护机制、分组公平竞争。官方还建议大家多用、善用举报功能。
六、Bungie 起诉《命运 2》外挂创作者,要求赔偿 万美元。自 年以来,《命运 2》背后的团队 Bungie 已采取重大措施打击作弊和游戏内作弊卖家。这包括对这些作弊程序的创建者采取法律行动。Bungie 已经对 Elite Boss Tech、Ring-1 和 VeteranCheats 等著名的《命运 2》外挂销售商提起了几起诉讼。
七、任天堂疑似开发工具、源代码等机密数据泄露!岁黑客为幕后黑手。据外媒报道,电子游戏巨头任天堂Nintendo最近遭受了数据泄露。一名化名为“netbox”的岁黑客声称其已入侵了任天堂的开发者门户,获得了诸如文档、开发工具、源代码和Nintendo网络的后端代码等机密信息。
go语言是编译型还是解释型
Go语言是编译型语言。
首先,理解编译型和解释型语言的差异是关键。编译型语言会将源代码转换为机器代码,这是一组可以直接由计算机执行的低级指令。这个过程通常发生在程序运行之前,因此编译型语言通常具有较高的执行速度。相反,解释型语言在程序运行时,会逐行读取源代码并将其转换为机器代码执行。由于这个过程在运行时进行,解释型语言的执行速度通常比编译型语言慢。
Go语言被设计为编译型语言。当我们使用Go编译器(如gc)编译Go程序时,它会将Go源代码(.go文件)转换为二进制可执行文件。这个过程通常发生在程序运行之前。这意味着,一旦编译完成,生成的二进制文件可以直接在计算机上运行,无需任何中间的解释或转换过程。
举个例子,如果我们有一个简单的Go程序,如下所示:
go
package main
import "fmt"
func main() {
fmt.Println("Hello, World!")
}
使用Go编译器,我们可以将这个源代码文件编译为一个可执行文件。在命令行中,我们可以使用以下命令来完成这个过程:
bash
go build -o hello hello.go
上述命令会生成一个名为“hello”的可执行文件。这个文件是机器代码,可以直接在计算机上运行。当我们运行这个文件时,它会直接输出“Hello, World!”,无需任何中间的解释或转换过程。
总结来说,Go语言是编译型语言,它将源代码预先转换为机器代码,这使得Go程序具有较高的执行速度。
Go语言源码阅读分析(3)-- unsafe
Go语言的unsafe包提供了一套打破类型安全限制的操作,但使用时需谨慎,因为它可能导致代码无法移植。包内主要包含unsafe.go文件和一些声明,实际实现和测试用例并未提供。关键内容如下: 1. Pointer类型:可以转换为任何类型的指针,以及Uintptr类型,这种转换允许直接读写内存,风险极高,需谨慎使用。 - 可以将任意类型转换为Pointer类型,但转换后不能长于原类型,且要求内存布局一致。例如,将float转换为uint的函数`Floatbits`。 - Pointer可以转换为uintptr,但这种转换仅用于内存地址的打印,且不能直接从uintptr恢复为Pointer,除非是枚举类型。 2. 偏移指针:用于访问结构体字段或数组元素,需确保指针不会超出原始对象的内存范围。 3. syscall调用:在syscall包中,某些函数需要在同一条语句中进行指针到uintptr的转换,以确保指针指向的对象在调用时仍然有效。 4. reflect包使用:reflect.Value.Pointer和UndafeAddr返回的都是uintptr,应在获取后立即转换为Pointer,避免对象被GC回收。 5. 反射结构体转换:例如StringHeader和SliceHeader的Data字段,仅在指向活动切片或字符串时有效。 总之,unsafe包的使用需遵循特定的规则和限制,不当使用可能导致程序不稳定或移植问题。接下来的计划是研究reflect包。go源码解析之TCP连接(六)——IO多路复用之事件注册
在探讨go源码解析之TCP连接(六)——IO多路复用之事件注册这一主题时,我们首先需要理解IO多路复用的基本概念及其在go语言中的实现方式。通常,我们通过系统函数如select、poll、epoll等来实现多路复用,尤其是在Linux操作系统下运行的网络应用程序中。对于直接使用C或C++进行网络程序编写的场景,这种方法较为常见。在这些场景下,应用程序可能在循环中执行epoll wait以等待可读事件,之后将读取网络数据的任务分配给一组线程完成。
然而,在go语言中,情况有所不同。go语言有自己的运行时环境,使用的是轻量级的协程而非传统的线程。这意味着在实现TCP服务器时,go语言能够通过将协程与epoll结合起来,有效地实现IO多路复用。这种结合使得go应用程序在处理网络连接时,能够以更高效的方式响应事件,避免阻塞单个协程。
在实现一个TCP server时,我们通常会为每个连接启动一个协程,这些协程负责循环读取连接中的数据并执行业务逻辑。在go语言中,当使用epoll实现IO多路复用时,其流程包括以下几个关键步骤:
1. **初始化epoll**:在go应用程序中,首先需要初始化epoll实例,以便于监控和响应各种事件。
2. **事件注册**:将新连接的socket加入epoll中,这一步骤类似于将文件描述符与epoll实例关联起来,以便在特定事件发生时接收通知。
3. **事件检测与处理**:在应用程序的主循环中,利用epoll wait检测到可读或可写事件后,根据事件类型执行相应的处理逻辑,如读取数据或写入数据,以及后续的业务逻辑处理。
4. **协程调度与唤醒**:当网络数据可读时,epoll会将事件通知到相应的协程。在go中,协程通过被挂起等待网络数据的到来,当数据可读时,epoll通过调用协程的等待函数(如fd.pd.waitRead),将协程从挂起状态唤醒,从而继续执行读取操作或其他业务逻辑。
通过这一系列过程,go语言成功地将协程与epoll结合,实现了高效的IO多路复用。这种方法不仅提高了并发性能,还简化了网络应用程序的实现,使得go语言在构建高性能、高并发的网络服务时具有显著优势。
总结而言,go语言通过巧妙地将协程与内核级别的IO多路复用技术(如epoll)整合在一起,实现了高效、灵活的网络编程模型。这一设计使得go语言在处理并发网络请求时,能够保持高性能和高响应性,是其在现代网络服务开发中脱颖而出的重要原因之一。