1.如何将小数转化为原码?
2.补码怎么算
3.小数的小数源码原码是多少
4.计算机组成原理的补码问题
如何将小数转化为原码?
一、小数部分的小数源码原码和补码可以表示为两个复数的分子和分母,然后计算二进制小数系统,小数源码根据下面三步的小数源码方法就会找出小数源代码和补码的百位形式。/=B/2^6=0.B
-/=B/2^7=0.B
二、小数源码将十进制十进制原始码和补码转换成二进制十进制,小数源码连笔源码然后根据下面三步的小数源码方法求出十进制源代码和补码形式。一个
0.=0.B
0.=0.B
三、小数源码二进制十进制对应的小数源码原码和补码
[/]源代码=[0.B]源代码=B
[-/]源代码=[0.b]源代码=B
[0.]原码=[0.b]原码=B
[0.]源代码=[0.B]源代码=B
[/]补体=[0.B]补体=B
[-/]补体=[0.b]补体=B
[0.]补码=[0.b]补码=B
[0.]补体=[0.B]补体=B
扩展资料:
原码、逆码、小数源码补码的小数源码使用:
在计算机中对数字编码有三种方法,对于正数,小数源码这三种方法返回的小数源码结果是相同的。
+1=[原码]=[逆码]=[补码]
对于这个负数:
对计算机来说,小数源码加、小数源码减、乘、除是最基本的运算。有必要使设计尽可能简单。如果计算机能够区分符号位,ai起名程序源码那么计算机的基本电路设计就会变得更加复杂。
负的正数等于正的负数,2-1等于2+(-1)所以这个机器只做加法,不做减法。符号位参与运算,只保留加法运算。
(1)原始代码操作:
十进制操作:1-1=0。
1-1=1+(-1)=[源代码]+[源代码]=[源代码]=-2。
如果用原代码来表示,让符号位也参与计算,对于减法,结果显然是不正确的,所以计算机不使用原代码来表示一个数字。
(2)逆码运算:
为了解决原码相减的问题,引入了逆码。
十进制操作:1-1=0。
1-1=1+(-1)=[源代码]+[源代码]=[源代码]+[源代码]=[源代码]=[源代码]=-0。
使用反减法,结果的dubbo 源码分析容器真值部分是正确的,但在特定的值“0”。虽然+0和-0在某种意义上是相同的,但是0加上符号是没有意义的,[源代码]和[源代码]都代表0。
(3)补充操作:
补语的出现解决了零和两个码的符号问题。
十进制运算:1-1=0。
1-1=1+(-1)=[原码]+[原码]=[补码]+[补码]=[补码]=[原码]=0。
这样,0表示为[],而之前的-0问题不存在,可以表示为[]-。
(-1)+(-)=[源代码]+[源代码]=[补充]+[补充]=[补充]=-。
-1-的结果应该是-。在补码操作的结果中,[补码]是-,但是请注意,由于-0的补码实际上是用来表示-的,所以-没有原码和逆码。(-的html直播录制源码补码表[补码]计算出的[原码]是不正确的)。
补码怎么算
1、正数的补码表示:正数的补码 = 原码
负数的补码 = { 原码符号位不变} + { 数值位按位取反后+1}or
= { 原码符号位不变} + { 数值位从右边数第一个1及其右边的0保持不变,左边安位取反}
以十进制整数+和-为例:
+原码 = _b
+补码 = _b
-原码= _b
-补码= _b
2、纯小数的原码:
纯小数的原码如何得到呢?方法有很多,在这里提供一种较为便于笔算的方法。
以0.为例,通过查阅可知其原码为0.___b。
操作方法:
将0. * 2^n 得到X,其中n为预保留的小数点后位数(即认为n为小数之后的小数不重要),X为乘法结果的整数部分。
此处将n取,得
X = d = ___b
即0.的二进制表示在左移了位后为___b,因此可以认为0.d = 0.___b 与查询结果一致。
再实验n取,得
X = d = __b 即 0.d = 0.__b,在忽略位小数之后的位数情况下,计算结果相同。
3、纯小数的补码:
纯小数的补码遵循的规则是:在得到小数的源码后,小数点前1位表示符号,aes加密源码算法从最低(右)位起,找到第一个“1”照写,之后“见1写0,见0写1”。
以-0.为例,其原码为1.___b
则补码为:
1. ___b
当然在硬件语言如verilog中二进制表示时不可能带有小数点(事实上不知道哪里可以带小数点)。
4、一般带小数的补码
一般来说这种情况下先转为整数运算比较方便
-.为例,经查询其原码为_.___b
笔算过程:
-. * 2^ = - = _____b,其中小数点在右数第位,与查询结果一致。
则其补码为_____b,在此采用 负数的补码 = { 原码符号位不变} + { 数值位按位取反后+1}方法
5、补码得到原码:
方法:符号位不动,幅度值取反+1 or符号位不动,幅度值-1取反
-.补码 = _(.)___b
取反= _(.)___b
+1 = _(.)___b 与查询结果一致
6、补码的拓展:
在运算时必要时要对二进制补码进行数位拓展,此时应将符号位向前拓展。
-5补码 = 4'b = 6'b_
ps.原码的拓展是将符号位提到最前面,然后在拓展位上部0.
-5原码 = 4‘b’ = 6'b_,对其求补码得6'b_,与上文一致。
扩展资料:
计算机中的符号数有三种表示方法,即原码、反码和补码。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位,三种表示方法各不相同。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。
此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
小数的原码是多少
1.和本就是原码。8位字长纯小数,第一位为符号位,小数点在第一位后面,后七位为具体数值,如: -0.原码表示为1.,反码为1.,补码为1.;-1的补码为1.。
若数据x的形式为x=x0.x1x2…xn(其中x0为符号位,x1~xn是数值的有效部分,也称为尾数,x1为最高有效位),则在计算机中的表示形式为:
一般说来,如果最末位xn= 1,前面各位都为0,则数的绝对值最小,即|x|min= 2^(-n)。如果各位均为1,则数的绝对值最大,即|x|max=1-2^(-n)。所以定点小数的表示范围是:2^(-n)≤|x|≤1 -2^(-n)。
扩展资料:
由于“编码总位数为8”的限制,真值-无法用原码、反码来表示,似乎不能用上述规则来求解补码,但实际上是可行的——只要不管它的最高位即可,操作办法如下:
将化为二进制为:1 ,最高位为1,可以只对舍去最高位后剩余的7位进行处理即可,首先取反得:,加1得:1 ,最高位有进位需丢弃,即得:,加上符号位就得补码:1 。
又如,当编码总位数为4时,真值X=+0.的原码、反码、补码均为:0 。真值X=-0.的原码、反码、补码依次为:1 、1 、1 。同理,特例,-1的补码为:1 。在定点小数中,小数点隐含在第一位编码和第二位编码之间。
按此规则,任何一个小数都可以被写成 :N = NS . N-1 N-2 … N-M。如果在计算机中用m+1个二进制位表示上述小数,则可以用最高(最左)一个二进制位表示符号(如用0表示正号,则1就表示负号),而用后面的m个二进制位表示该小数的数值。
小数点不用明确表示出来,因为它总是固定在符号位与最高数值位之间,已成定论。定点小数的取值范围很小,对用m+1个二进制位的小数来说,其值的范围为:
|N| ≤ 1-2^(-m)即小于1的纯小数,这对用户算题是十分不方便的,因为在算题前,必须把要用的数,通过合适的 "比例因子"化成绝对值小于1的小数,并保证运算的中间和最终结果的绝对值也都小于1,在输出真正结果时,还要把计算的结果按相应比例加以扩大。
计算机组成原理的补码问题
如果最高位表示的是符号位的话,那么表示的小数源码为-0.,因此对应的十进制数位:
x=-(2^(-2)+2^(-4))
因此,-1/2x=2^(-3)+2^(-5)
对应的补码就应该是0.