1.Opencv项目实践 —— OCR文档扫描
2.python打造实时截图识别OCR
3.我用Python在网上复制文字的几种实用方法
4.Tesseract OCR 文字识别 攻略
Opencv项目实践 —— OCR文档扫描
在OCR文档扫描项目实践中,关键任务是对歪斜文档进行处理,提取其中的文字内容。以下是实现这一目标的详细步骤:
首先,项目开始于读取图像(1),然后对图像进行预处理(2)。文华程序化交易模型源码预处理阶段包括重新定义图像大小(3),将其转换为灰度图,应用高斯滤波以减少噪声,并执行边缘检测以突出文档边界。
接着,使用轮廓检测(4)方法找到文档的主体轮廓。通过对轮廓的分析,找到四个关键点a、b、c和d,通过计算它们之间的距离确定文档的原始大小,然后利用透视变换(5)技术,根据这四个点进行角度校正,得到一个摆正的cms教程-源码窝图像。
图像校正后,进行二值化处理(6),以增强字符的对比度,便于后续的字符识别。最后,利用OCR工具包(如pytesseract)(7)识别并提取出文本内容。需要注意的是,这个过程中可能需要下载并配置OCR工具包,同时确保环境变量中的路径设置正确。
整个流程的输出是识别出的文档文字内容,源代码则记录了这些步骤的具体实现。通过以上步骤,即使面对歪斜的文档照片,也能成功扫描出其中的文字,满足项目需求。
python打造实时截图识别OCR
Python打造实时截图识别OCR,是实现自动化文字识别的关键技术。本文将详细阐述实现这一功能的两种方法,以Snipaste工具辅助,闪兑支付源码同时结合pytesseract与百度API接口,提供从工具下载到OCR实现的全程指导。
### 方法一:pytesseract
#### 第一步:下载并安装Tesseract-OCR
访问指定网址下载Tesseract-OCR,并将其安装在你的计算机上。
#### 第二步:配置环境变量
将Tesseract-OCR的路径添加到系统环境变量中,确保Python能够访问到Tesseract的执行文件。
#### 第三步:确认Tesseract版本
通过命令行输入`tesseract -v`来检查Tesseract的版本信息,确保安装正确。
#### 第四步:修改pytesseract配置
在Python的site-packages目录下,编辑pytesseract文件,以确保能够识别特定语言。
#### 第五步:下载并安装字体
下载与Tesseract版本相匹配的字体,并将其放置在指定目录下,以便OCR识别。
#### 第六步:源码解析与测试
解析源码,进行OCR识别测试,查看效果。
#### 评价
优点:免费,操作简便,淘宝页面html源码适合初学者。
缺点:识别准确率有限,识别效果一般。
### 方法二:百度API接口
#### 第一步:获取百度AI开放平台资源
注册并登录百度智能云账号,创建应用获取AppID,API Key,Secret Key。
#### 第二步:安装百度API
通过pip安装百度API接口。
#### 第三步:源码解析与测试
解析源码,设置参数,实时进行OCR识别测试。
#### 评价
优点:功能强大,识别效果显著。
### 小问题
在尝试将功能封装为exe时,发现循环截图和实时识别的问题,该问题待解决后将实现完整的封装。
总结,使用Python结合上述方法,能够有效实现实时截图识别OCR,basic_istream源码适用于自动化、文字处理等场景。尝试不同的方法和优化策略,可以提高识别准确性和效率。
我用Python在网上复制文字的几种实用方法
在学习或者工作中,我们经常需要在网页上复制文字内容。然而,由于网页设计的复杂性和限制,这并非总是一件容易的事。尤其是在遇到包含二维码、VIP限制或复杂HTML标签的网页时,复制过程可能会变得相当棘手。幸运的是,我们可以利用Python的几种实用方法来解决这一问题。
首先,我们可以尝试观察网页源代码,查看所需复制内容的位置。如果内容直接存在于HTML标签内,使用正则表达式可以帮助我们提取所需文本。例如,假设内容位于特定标签内,我们可以通过编写相应的正则表达式来匹配并移除HTML标签,从而获得干净的文本内容。
假设网页源代码中存在以下内容,我们需要提取其中的文本部分:
这是一段示例文本。
通过使用Python的正则表达式库,如re模块,我们可以编写如下代码来提取文本:
python
import re
html_content = '''
这是一段示例文本。
'''
# 提取内容文本
text = re.search(r'
(.*?)
', html_content).group(1)
print(text)
通过运行上述代码,我们将得到完整的文本内容“这是一段示例文本。”
然而,如果所需复制的内容不在源代码中,或者内容嵌套在复杂的HTML结构中,我们可能需要采取不同的策略。这时,可以考虑使用屏幕截图与OCR(光学字符识别)技术来解决问题。通过将需要复制的部分截取为,然后使用OCR工具识别中的文字,可以轻松提取所需内容。例如,我们可以使用Tesseract OCR库来处理文件,实现文字识别。
假设我们想要提取以下中的文字:
示例
我们首先需要使用Python的图像处理库(如Pillow)来截取中的特定区域,然后使用Tesseract OCR进行文字识别:
python
from PIL import Image
import pytesseract
# 截取并保存为临时文件
image = Image.open('image.png')
crop_image = image.crop((x1, y1, x2, y2)) # (x1, y1)为左上角坐标,(x2, y2)为右下角坐标
crop_image.save('crop.png')
# 使用Tesseract进行OCR识别
text = pytesseract.image_to_string('crop.png', lang='chi_sim')
print(text)
通过上述代码,我们可以从中提取文字内容。这种方法虽然需要额外的处理步骤,但对于特定场景下复制网页上的文字非常有效。
总结,Python提供多种方法来解决在网页上复制文字的问题,包括直接从源代码中提取、使用正则表达式处理HTML标签、以及通过屏幕截图与OCR技术识别中的文字。这些方法不仅能够提高效率,还能帮助我们更灵活地应对不同类型的网页布局和限制。希望这些技巧能对您在学习和工作中遇到的挑战提供一些帮助!
Tesseract OCR 文字识别 攻略
OCR技术,即光学字符识别,是通过图像识别技术解析照片中的印刷体文字,但不识别手写体。在业界,Tesseract是广泛应用的OCR工具,由Google维护,但也存在挑战,尤其是在医疗领域。识别医疗文档时,如病历照片,由于折叠、扭曲、光照等问题,识别准确度受到严重影响。同时,化验单等文档不仅要求识别文字,还需将识别结果标准化填充至特定表格中。
针对医疗场景,本文旨在探讨如何针对Tesseract进行定制改造,开发适用于不同医院表单格式的通用OCR系统。首先,安装Tesseract有多种方法,如MacOS的MacPorts或Homebrew,MacPorts安装步骤相对简单。安装完成后,通过命令行执行tesseract进行文字识别,如微信对话截图,结果并不完美,部分文字识别失败,如表情符号和部分特殊字符。
在Python编程中,Pytesseract是Tesseract的Python封装,便于使用,但功能有限。通过调整图像处理和语言设置,如使用Image.open()配合lang参数,可以改善识别效果。然而,对于带有表情符号的文字,Tesseract可能无法识别。深入研究可能需要查看其源代码。此外,对于复杂文档,如预先分段再识别,可以考虑结合其他技术,如Custom-OCR-YOLO,以提高识别精度。
2025-01-19 11:162015人浏览
2025-01-19 11:021258人浏览
2025-01-19 10:192821人浏览
2025-01-19 09:322276人浏览
2025-01-19 09:052390人浏览
2025-01-19 08:46958人浏览
據中新社報道,當地時間10月17日,2024紐約動漫展在美國紐約賈維茨中心舉行,動漫迷身着各式裝扮共赴展會。圖為10月17日,動漫迷身着各式裝扮共赴展會。中新社) 圖為10月17日,動漫迷身着各式裝
印尼火山與地質災害研究機構圖片) 據印尼火山與地質災害研究機構PVMBG)消息,當地時間8月2日,印尼伊布火山多次噴發,火山灰柱最高達1500米。來源:央視新聞)責任編輯:
抖音集团有较大影响力的公益项目“抖音寻人”,缘起于8年前的一次偶然事件。2016年大年初二,当时负责今日头条城市新闻推送的抖音集团员工曾华,在网上看到河北燕郊一位名为李凤琴的83岁患有阿尔茨海默病的老