1.Ӣΰ?英伟源码源码? Դ??
2.NVIDIA Modulus 23.03安装和使用方法
3.英伟达被黑客攻击,DLSS源代码泄露,业务会受影响吗?
4.极智开发 | 解读英伟达软件生态 一切的基础CUDA
5.英伟达jetsonano连接外部蓝牙设备报错?
6.小模型卷起来了:Mistral联合英伟达开源12B小模型,128k上下文
Ӣΰ?达源? Դ??
小模型,成为本周的码英AI焦点。
相较于动辄数千亿参数的伟达大模型,小模型展现出其独特的泄露魅力。它们在计算成本、驱动黑色空降源码训练与部署的英伟源码源码便捷性上有着显著优势,尤其适合在计算资源有限、达源对数据安全性要求较高的码英场景中应用。因此,伟达科技巨头如OpenAI和谷歌等纷纷致力于训练高效的泄露小模型,推动了小模型领域的驱动快速发展。
在这股浪潮中,英伟源码源码Mistral AI携手英伟达联合推出了最新的达源小模型Mistral NeMo,其参数量达到了亿(B),码英上下文窗口为k,是一款旨在在资源有限的情况下实施AI解决方案的强大工具。
Mistral NeMo以其卓越的性能在多轮对话、数学、常识推理、世界知识和编码准确性上脱颖而出,超越了同参数规模的其他模型。在MMLU基准测试中,虽然在某些方面稍逊于Gemma 2 9B,但在多个关键基准上,Mistral NeMo均表现出色,实现了对Gemma 2 9B和Llama 3 8B的超越。
为了促进模型的商用化,Mistral NeMo以Apache2.0许可证的金色狂牛源码形式开放了预训练的基本检查点和指令微调检查点,允许企业在商业场景中灵活使用。同时,该模型经过量化感知训练,在FP8推理下实现了性能与效率的完美平衡,既保证了准确性,又显著减少了内存消耗和部署速度,使模型在各种场景下都能高效学习与处理任务。
Mistral NeMo专为在单个NVIDIA LS、NVIDIA GeForce RTX 或NVIDIA RTX GPU上运行而设计,其高效能、低成本以及高度安全性使其成为了企业用户的理想选择。在企业级软件的支持下,Mistral NeMo NIM不仅具有专用功能分支和严格的验证流程,还提供了企业级安全性,确保了模型在商用场景中的稳定性和可靠性。
为了满足全球多语言应用程序的需求,Mistral NeMo模型针对多种语言进行了训练,尤其在英语、法语、德语、西班牙语、意大利语、葡萄牙语、中文、日语、韩语、阿拉伯语和印地语方面表现出色,推动了人工智能模型的山西培训系统源码全球化进程。此外,Mistral NeMo使用基于Tiktoken的全新分词器Tekken,优化了对多种语言的文本和源代码的压缩效率,使其在处理不同语言的文本时更为高效。
通过高级微调和调整,Mistral NeMo在遵循精确指令、推理、多轮对话和代码生成能力上显著提升,进一步强化了其在AI领域的竞争力。
综上所述,Mistral NeMo的发布标志着企业级AI工具的又一突破性进展,为企业用户提供了高效、可访问和强大的AI解决方案。随着AI生态系统的不断发展,Mistral NeMo的出现不仅加速了AI能力向最终用户普及的进程,也为AI领域的未来创新奠定了坚实的基础。
NVIDIA Modulus .安装和使用方法
如果你对NVIDIA的Modulus .版本感兴趣,以下是你需要了解的安装和使用指南。从年开始,Modulus将进行重大更新,建议直接从.版本开始,因为它将成为新开发的基础,旧版本将不再维护,所有功能将迁移至此。 Modulus .开源,可在GitHub获取。新版本主要由两个部分组成:Modulus包和modulus-sym包。sym包整合了大量API接口,自动点关注源码以下是部分核心模块的导入示例: from modulus.sym.hydra import to_absolute_pathfrom modulus.sym.solver import Solver
from modulus.sym.domain import Domain
...
from modulus.sym.utils.io.plotter import ValidatorPlotter
安装步骤如下:首先,从GitHub下载modulus源代码,确保选择正确的版本,然后构建镜像:
#docker build -t modulus:ci --target ci -f Dockerfile .启动镜像,在其中安装modulus-sym:
#pip install .可能需要额外安装一些依赖,如:
sudo apt-get install libx-6sudo apt install libgl1-mesa-glx
sudo apt-get install libxrender1
完成以上步骤后,你就可以开始编写并运行Modulus .的代码了。对于进一步的技术交流和疑难解答,我们建议加入以下QQ群: 群名称:英伟达Modulus仿真技术交流(PINN)群号:
这里是一个活跃的社区,可以与同行分享经验和解决问题。祝你在使用Modulus .的过程中顺利!英伟达被黑客攻击,DLSS源代码泄露,业务会受影响吗?
黑客帝国再起风云:英伟达遭遇大规模数据窃取/
据彭博社、每日电讯报和TheVerge权威报道,全球科技巨头英伟达近期遭受了黑客的猛烈攻击。据披露,这家南美黑客组织LAP$声称窃取了超过1TB的独家技术资料,引发了业界的广泛关注。幸运的是,LAP$已备份数据,使得英伟达的反击行动未能得逞。
尽管如此,英伟达在一份针对Hardwarexx德国硬件爱好者网站的声明中坚称,此次事件并未造成业务中断的威胁。他们迅速采取行动,强化网络安全,聘请专家应对,并与执法部门保持紧密合作。尽管存在威胁参与者获取员工凭证和部分专有信息的qq防申述源码风险,但英伟达团队正在全力以赴进行调查,以确保信息安全。
值得注意的是,TechPower报道称,黑客已将深度学习超级采样(DLSS)的源代码公之于众,这项技术是英伟达的看家本领,尤其在游戏性能提升方面发挥关键作用。尽管英伟达曾因封闭源代码引发争议,但现在开源技术如FSR和XeSS的竞争加剧。然而,尽管DLSS的源码泄露,但其2.2版本的技术实力仍被公认为行业领先。
编辑观点:/对于内容创作者,我们尊重知识产权,呼吁所有厂商避免非法使用这些技术。对于大学生来说,这是一个了解行业领先技术的好机会,能够丰富学习内容,提升技能储备。尽管面临挑战,但英伟达的安全意识与持续投资表明,他们将继续在技术保护上保持领先地位。
此次事件提醒我们,网络安全是永恒的话题,每个行业参与者都需加强防护。希望大家从中获益,共同维护科技领域的健康发展。
极智开发 | 解读英伟达软件生态 一切的基础CUDA
欢迎关注我的公众号 [极智视界],获取我的更多经验分享
大家好,我是极智视界,本文来介绍一下 解读英伟达软件生态 一切的基础CUDA。
邀您加入我的知识星球「极智视界」,星球内有超多好玩的项目实战源码下载,链接: t.zsxq.com/0aiNxERDq
CUDA,全称为 Compute Unified Device Architecture,是英伟达于 年推出的一个平行计算平台和应用编程接口 API 模型。CUDA 之于英伟达的重要性主要体现在下面几个方面:
所以,解读英伟达软件生态,必须要从 CUDA 说起。虽然 CUDA 再往下还有如 PTX 的指令集加速层级,但是PTX 的普及程度其实并不高,甚至可能很多朋友都没听说过 PTX,其实也算正常,因为基本上的 N 卡开发者,根本没必要接触到 PTX,把 CUDA 学好就足够够的了。
把 CUDA 作为标杆,似乎是很多 AI 芯片厂商 "共同的做法",比较有代表性的是升腾的 Ascend C、寒武纪的 Bang C,但是其实这几个之间有相似但又有不相似的地方。相似的地方在于不管是升腾还是寒武纪都想提供一套类似 CUDA 的可以充分调用自己 NPU 硬件加速的对外接口,提高客制化的灵活性。不相似的地方一方面在于我们是在学人家,很多接口其实是为了贴近 CUDA 的接口而进行的高级封装,毕竟大部分开发者其实已经形成了 CUDA 的开发习惯,这个时候让大家切换起来更加顺手的做法就是 "模仿",而要做这种程度的 "模仿" 势必要协调好硬件架构和软件接口的映射;不相似的另外一方面体现在软件生态的层次清晰度,这个拿升腾来专门说,升腾 Ascend C 的发布时间在 年 5 月 6 日,而反观英伟达 CUDA 的发布时间是 年。什么意思呢,很明显可以看到英伟达的软件生态是以 CUDA 为基础然后层层往上叠的,而升腾是先有了 CANN,先有了 MindSpore 这些 "高层建筑",然后往下才有了 Ascend C,这种软件生态的层次结构就没有那么清晰,当然这种说法也只是基于时间上的,这并不影响它在空间上还是具备不错的软件生态层次结构。
再回到 CUDA 本身,需要清楚的一点是,CUDA 其实一开始主要是面向优化计算密集型计算 (Compute-Bound),因为不管是最开始的通用科学计算还是后来的以 CNN 为主流的深度学习计算都是计算密集型,但是后来 Transformer 又逐渐流行,所以 CUDA 也是不断在 "与时俱进" 在做平衡、做兼顾,比如在 A 开始,CUDA 新增了从 L1 Cache 到 HBM Global Memory 数据直接异步拷贝的指令,其实也是在丰富自身对于访存密集型计算 (Memory-Bound) 的优化。
我之前写过挺多关于 CUDA 的分享,罗列一些,
CUDA 是一种硬件强相关的编程模型,要掌握好 CUDA,需要先看懂 GPU 硬件架构,从而映射到 CUDA 内存模型、线程模型上,这点跟 C 语言、跟 C++ 这类 "高级" 编程语言就很不一样,所以很多朋友会觉得 CUDA C 比较难写,特别是要写出高性能的 CUDA C,比较难。确实,这是事实,特别是对于写出高性能的 CUDA C,会涉及资源的高效调度,比如 Shared Memory、L1 Cache 等的调度;会涉及适应硬件架构超参的配置,比如 Thread、Block、Grid 等的配置。
总之,对于 CUDA 的深入学习,是一门 "稳挣不亏" 的 "买卖",原因不再过多赘述,主要体现在它的重要性上。
好了,以上分享了 解读英伟达软件生态 一切的基础CUDA,希望我的分享能对你的学习有一点帮助。
公众号传送
英伟达jetsonano连接外部蓝牙设备报错?
解决英伟达Jetson Nano连接外部蓝牙设备报错问题的步骤如下:
首先,检查Jetson Nano默认内核是否支持RFCOMM协议,执行命令:lamb@lamb-desktop:~$ zcat /proc/config.gz | grep RFCOM
结果显示:CONFIG_BT_RFCOMM=y, 但CONFIG_BT_RFCOMM_TTY未设置,这意味着默认内核不支持RFCOMM协议。
解决方法是重新编译kernel源代码,具体步骤参考这篇博客:blog.hypriot.com/post/n...,在menuconfig的panel上找到RFCOMM选项,激活它。
编译完成后,使用命令sudo rfcomm bind 0 ::3E:4B::,可以创建出/dev/rfcomm0串口。
至此,Jetson Nano成功连接外部蓝牙设备,问题解决。对于Linux的了解还需继续深入,持续学习。
小模型卷起来了:Mistral联合英伟达开源B小模型,k上下文
小模型时代来临:Mistral与英伟达联手开源B小模型Mistral NeMo,其k的上下文窗口使其在多语言应用和效率上表现出色。这款亿参数的模型旨在提供低成本、易用且高效的AI解决方案,尤其适合计算资源受限和数据安全要求高的场景。
OpenAI的GPT-4o mini以其美分/百万输入token和美分/百万输出token的定价,展示了智能成本的大幅下降,而Mistral NeMo则在性能上与9B的Gemma 2和8B的Llama 3展开竞争,尽管参数量较多,但展示了SOTA级别的推理能力。Mistral NeMo还支持量化感知训练,可进行FP8推理,且拥有更高效的分词器Tekken,压缩文本和源代码的效率显著提升。
英伟达应用深度学习研究副总裁Bryan Catanzaro强调了小模型的便捷性和多样性,指出Mistral NeMo可以轻松部署在本地硬件,如RTX GPU,这对于企业用户特别是关注数据隐私和延迟的企业来说具有吸引力。Mistral NeMo的k上下文窗口对于处理长文档和复杂任务具有显著价值,但主要定位在笔记本和台式电脑而非移动设备上。
这次发布预示着AI软件市场的潜在变革,它可能促使企业更加倾向于本地部署的AI解决方案,从而缓解对数据隐私、成本和延迟的顾虑。对于资源有限的小企业来说,这提供了与大公司竞争的新机会。然而,Mistral NeMo的实际效果和围绕它的生态系统建设将决定其长远影响。总的来说,Mistral NeMo标志着AI在企业环境中的应用正朝着更高效、可部署的方向发展,未来是否会撼动大模型的地位,还需拭目以待。