欢迎来到【返利网java源码】【潜伏线指标源码】【问道渠道服源码】lock锁源码_lock源码分析-皮皮网网站!!!

皮皮网

【返利网java源码】【潜伏线指标源码】【问道渠道服源码】lock锁源码_lock源码分析-皮皮网 扫描左侧二维码访问本站手机端

【返利网java源码】【潜伏线指标源码】【问道渠道服源码】lock锁源码_lock源码分析

2025-01-19 07:13:56 来源:{typename type="name"/} 分类:{typename type="name"/}

1.Springboot基于Redisson实现Redis分布式可重入锁【案例到源码分析】
2.c++锁的锁源使用 unique_lock
3.Java并发编程解析 | 基于JDK源码解析Java领域中并发锁之StampedLock锁的设计思想与实现原理 (三)
4.Redis 实现分布式锁 +Redisson 源码解析
5.android wake_lock 锁源码分析
6.33张图解析ReentrantReadWriteLock源码

lock锁源码_lock源码分析

Springboot基于Redisson实现Redis分布式可重入锁【案例到源码分析】

       一、前言

       实现Redis分布式锁,码l码分最初常使用SET命令,锁源配合Lua脚本确保原子性。码l码分然而手动操作较为繁琐,锁源官网推荐使用Redisson,码l码分返利网java源码简化了分布式锁的锁源实现。本文将从官网至整合Springboot,码l码分直至深入源码分析,锁源以单节点为例,码l码分详细解析Redisson如何实现分布式锁。锁源

       二、码l码分为什么使用Redisson

       通过访问Redis中文官网,锁源我们发现官方明确指出Java版分布式锁推荐使用Redisson。码l码分官网提供了详细的锁源文档和结构介绍,帮助开发者快速上手。

       三、Springboot整合Redisson

       为了实现与Springboot的集成,首先导入Redisson依赖。接下来,参照官网指导进行配置,并编写配置类。结合官网提供的加锁示例,编写简单的Controller接口,最终测试其功能。

       四、lock.lock()源码分析

       在RedissonLock实现类中,`lock`方法的实现揭示了锁获取的流程。深入至`tryLockInnerAsync`方法,发现其核心逻辑。进一步调用`scheduleExpirationRenewal`方法,潜伏线指标源码用于定时刷新锁的过期时间,确保锁的有效性。此过程展示了锁实现的高效与自适应性。

       五、lock.lock(, TimeUnit.SECONDS)源码分析

       当使用带有超时时间的`lock`方法时,实际调用的逻辑与常规版本类似,关键差异在于`leaseTime`参数的不同设置。这允许开发者根据需求灵活控制锁的持有时间。

       六、lock.unlock()源码分析

       解锁操作通过`unlockAsync`方法实现,进一步调用`unlockInnerAsync`方法完成。这一过程确保了锁的释放过程也是异步的,增强了系统的并发处理能力。

       七、总结

       通过本文,我们跟随作者深入Redisson的底层源码,理解了分布式锁的实现机制。这一过程不仅提升了对Redisson的理解,也激发了面对复杂技术挑战时的勇气。希望每位开发者都能勇敢探索技术的边界,共同进步。欢迎关注公众号,获取更多技术文章首发信息。

c++锁的使用 unique_lock

       这个锁的方法我没用过,没法知道是不是你代码上的问题。。你试试我之前用过的一个方法吧,用的是关键段做的

       #include <windows.h>

       #include <process.h> // 忘了是哪个头文件了

       CRITICAL_SECTION lock; // 锁的申明,在所有线程开始前

       EnterCriticalSection(&lock); // 获取临界区锁

       临界区动作

       LeaveCriticalSection(&lock); // 释放临界区锁

       DeleteCriticalSection(&lock); // 锁的销毁,在所有线程结束后

       

参考资料:

       /morewindows/article/details/

       这个博客一系列文章讲解了很多线程的问道渠道服源码问题,值得一看。

Java并发编程解析 | 基于JDK源码解析Java领域中并发锁之StampedLock锁的设计思想与实现原理 (三)

       在并发编程领域,核心问题涉及互斥与同步。互斥允许同一时刻仅一个线程访问共享资源,同步则指线程间通信协作。多线程并发执行历来面临两大挑战。为解决这些,设计原则强调通过消息通信而非内存共享实现进程或线程同步。

       本文探讨的关键术语包括Java语法层面实现的锁与JDK层面锁。Java领域并发问题主要通过管程解决。内置锁的粒度较大,不支持特定功能,因此JDK在内部重新设计,引入新特性,实现多种锁。基于JDK层面的锁大致分为4类。

       在Java领域,AQS同步器作为多线程并发控制的基石,包含同步状态、等待与条件队列、独占与共享模式等核心要素。JDK并发工具以AQS为基础,实现各种同步机制。

       StampedLock(印戳锁)是基于自定义API操作的并发控制工具,改进自读写锁,特别优化读操作效率。印戳锁提供三种锁实现模式,支持分散操作热点与削峰处理。在JDK1.8中,通过队列削峰实现。主页的html源码

       印戳锁基本实现包括共享状态变量、等待队列、读锁与写锁核心处理逻辑。读锁视图与写锁视图操作有特定队列处理,读锁实现包含获取、释放方式,写锁实现包含释放方式。基于Lock接口的实现区分读锁与写锁。

       印戳锁本质上仍为读写锁,基于自定义封装API操作实现,不同于AQS基础同步器。在Java并发编程领域,多种实现与应用围绕线程安全,根据不同业务场景具体实现。

       Java锁实现与运用远不止于此,还包括相位器、交换器及并发容器中的分段锁。在并发编程中,锁作为实现方式之一,提供线程安全,但实际应用中锁仅为单一应用,提供并发编程思想。

       本文总结Java领域并发锁设计与实现,重点介绍JDK层面锁与印戳锁。文章观点及理解可能存在不足,欢迎指正。技术研究之路任重道远,希望每一份努力都充满价值,未来依然充满可能。

Redis 馨怡坊源码实现分布式锁 +Redisson 源码解析

       在一些场景中,多个进程需要以互斥的方式独占共享资源,这时分布式锁成为了一个非常有用的工具。

       随着互联网技术的快速发展,数据规模在不断扩大,分布式系统变得越来越普遍。一个应用往往会部署在多台机器上(多节点),在某些情况下,为了保证数据不重复,同一任务在同一时刻只能在一个节点上运行,即确保某一方法在同一时刻只能被一个线程执行。在单机环境中,应用是在同一进程下的,仅需通过Java提供的 volatile、ReentrantLock、synchronized 及 concurrent 并发包下的线程安全类等来保证线程安全性。而在多机部署环境中,不同机器不同进程,需要在多进程下保证线程的安全性,因此分布式锁应运而生。

       实现分布式锁的三种主要方式包括:zookeeper、Redis和Redisson。这三种方式都可以实现分布式锁,但基于Redis实现的性能通常会更好,具体选择取决于业务需求。

       本文主要探讨基于Redis实现分布式锁的方案,以及分析对比Redisson的RedissonLock、RedissonRedLock源码。

       为了确保分布式锁的可用性,实现至少需要满足以下四个条件:互斥性、过期自动解锁、请求标识和正确解锁。实现方式通过Redis的set命令加上nx、px参数实现加锁,以及使用Lua脚本进行解锁。实现代码包括加锁和解锁流程,核心实现命令和Lua脚本。这种实现方式的主要优点是能够确保互斥性和自动解锁,但存在单点风险,即如果Redis存储锁对应key的节点挂掉,可能会导致锁丢失,导致多个客户端持有锁的情况。

       Redisson提供了一种更高级的实现方式,实现了分布式可重入锁,包括RedLock算法。Redisson不仅支持单点模式、主从模式、哨兵模式和集群模式,还提供了一系列分布式的Java常用对象和锁实现,如可重入锁、公平锁、联锁、读写锁等。Redisson的使用方法简单,旨在分离对Redis的关注,让开发者更专注于业务逻辑。

       通过Redisson实现分布式锁,相比于纯Redis实现,有更完善的特性,如可重入锁、失败重试、最大等待时间设置等。同时,RedissonLock同样面临节点挂掉时可能丢失锁的风险。为了解决这个问题,Redisson提供了实现了RedLock算法的RedissonRedLock,能够真正解决单点故障的问题,但需要额外为RedissonRedLock搭建Redis环境。

       如果业务场景可以容忍这种小概率的错误,推荐使用RedissonLock。如果无法容忍,推荐使用RedissonRedLock。此外,RedLock算法假设存在N个独立的Redis master节点,并确保在N个实例上获取和释放锁,以提高分布式系统中的可靠性。

       在实现分布式锁时,还需要注意到实现RedLock算法所需的Redission节点的搭建,这些节点既可以是单机模式、主从模式、哨兵模式或集群模式,以确保在任一节点挂掉时仍能保持分布式锁的可用性。

       在使用Redisson实现分布式锁时,通过RedissonMultiLock尝试获取和释放锁的核心代码,为实现RedLock算法提供了支持。

android wake_lock 锁源码分析

       在Android系统中,WakeLock锁被广泛用于保持设备唤醒,避免进入休眠状态,以满足应用程序持续运行的需求。本文从源码角度对WakeLock的基本流程原理进行深入分析。

       WakeLock主要存在三种表现形式:

       1. PowerManager.WakeLock:此接口由PMS提供给应用层和其它组件,用于申请WakeLock。

       2. PowerManagerService.WakeLock:它是PowerManager.WakeLock在PMS内部的具体实现。

       3. SuspendBlocker:在向底层节点操作时,PowerManagerService.WakeLock会转变为这种形式。

       接下来,我们通过一个实例演示如何申请WakeLock锁。

       在PowerManagerService中,会根据特定条件禁用部分WakeLock。这通常发生在:

       1. 强制进入suspend状态。

       2. 当WakeLock所属进程不处于active状态且进程adj大于PROCESS_STATE_RECEIVER。

       3. 设备Idle处于IDLE状态,且所属进程不在doze白名单中。

       当禁用条件满足时,mWakeLockSuspendBlocker会调用JNI方法nativeAcquireSuspendBlocker。

       在power.c文件中,acquire_wake_lock的实现会将一个字符串数据写入指定的路径文件节点,新版本路径为“/sys/power/wake_lock”,旧版本为“/sys/android_power/acquire_partial_wake_lock”。至此,WakeLock锁的获取过程基本完成。释放过程与获取类似。

       文章结束,感谢您的阅读。

张图解析ReentrantReadWriteLock源码

       今天,我们深入探讨ReentrantReadWriteLock源码,解析其内部结构与工作原理。文章分为多个部分,逐一剖析读写锁的创建、获取与释放过程。

       读写锁规范与实现

       ReentrantReadWriteLock(简称RRW)作为读写锁,其核心功能在于控制并发访问的读与写操作。为了规范读写锁的使用,RRW首先声明了ReadWriteLock接口,并通过ReadLock与WriteLock实现接口,确保读锁与写锁的正确操作。

       为了实现锁的基本功能,WriteLock与ReadLock都继承了Lock接口。这些类内部依赖于AQS(AbstractQueuedSynchronizer)抽象类,AQS为加锁和解锁过程提供了统一的模板函数,简化了锁实现的复杂性。

       核心组件与流程

       AQS提供了一套多线程访问共享资源的同步模板,包括tryAcquire、release等核心抽象函数。WriteLock与ReadLock通过继承Sync类,实现了AQS中的tryAcquire、release(写锁)和tryAcquireShared、tryReleaseShared(读锁)函数。

       Sync类在ReentrantReadWriteLock中扮演关键角色,它不仅实现了AQS的抽象函数,还通过位运算优化了读写锁状态的存储,减少了资源消耗。此外,Sync类还定义了HoldCounter与ThreadLocalHoldCounter,进一步管理锁的状态与操作。

       公平与非公平策略

       为了适应不同场景的需求,ReentrantReadWriteLock支持公平与非公平策略。通过Sync类的FairSync与NonfairSync子类,实现了读锁与写锁的阻塞控制。公平策略确保了线程按顺序获取锁,而非公平策略允许各线程独立竞争。

       全局图与细节解析

       文章最后,构建了一张全局图,清晰展示了ReentrantReadWriteLock的各个组件及其相互关系。通过深入细节,分别解释了读写锁的创建、获取与释放过程。以Lock接口的lock与unlock方法为主线,追踪了从Sync类出发的实现路径,包括tryAcquire、tryRelease等核心函数,以及它们在流程图中的表现。

       总结,ReentrantReadWriteLock通过继承AQS并扩展公平与非公平策略,实现了高效、灵活的读写锁功能。通过精心设计的Sync类及其相关组件,确保了多线程环境下的并发控制与资源访问优化。深入理解其内部实现,有助于在实际项目中更好地应用读写锁,提升并发性能与系统稳定性。